cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099088 Indices of prime companion Pell numbers, divided by 2 (A001333).

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 16, 19, 29, 47, 59, 163, 257, 421, 937, 947, 1493, 1901, 6689, 8087, 9679, 28753, 79043, 129127, 145969, 165799, 168677, 170413, 172243, 278321, 552283
Offset: 1

Views

Author

T. D. Noe, Sep 24 2004

Keywords

Comments

Note that for A001333(n) to be prime, the index n must be prime or a power of 2. The indices greater than 421 yield probable primes.
Numbers n for which ((1+sqrt(2))^n + (1-sqrt(2))^n)/2 is prime. - Artur Jasinski, Dec 10 2006

References

  • F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 62, 1983.

Crossrefs

Cf. A002203 (companion Pell numbers), A086395 (primes in A001333), A096650 (indices of prime Pell numbers).
Cf. A005850.

Programs

  • Mathematica
    lst={}; a=1; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst
    (* Second program: *)
    Do[If[PrimeQ[Expand[((1 + Sqrt[2])^n + (1 - Sqrt[2])^n)/2]], Print[n]], {n, 0, 1000}] (* Artur Jasinski, Dec 10 2006 *)
  • PARI
    isok(n) = isprime(polchebyshev(n, 1, I)/I^n); \\ Michel Marcus, Dec 07 2018

Extensions

a(24) from Eric W. Weisstein, May 22 2006
a(25) from Eric W. Weisstein, Aug 29 2006
a(26) from Eric W. Weisstein, Nov 11 2006
a(27) from Eric W. Weisstein, Nov 26 2006
a(28) from Eric W. Weisstein, Dec 10 2006
a(29) from Eric W. Weisstein, Jan 25 2007
a(30) from Robert Price, Dec 07 2018
a(31) from Robert Price, Dec 05 2023