cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A373912 Number of compositions of 7*n into parts 6 and 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 3448, 6556, 12121, 22509, 43453, 89150, 193823, 436304, 989759, 2219064, 4869285, 10434412, 21900170, 45297211, 93054446, 191371581, 396480142, 830227401, 1756883373, 3746468095, 8017653633, 17151612398
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n+k, n-6*k));

Formula

a(n) = A017847(7*n).
a(n) = Sum_{k=0..floor(n/6)} binomial(n+k,n-6*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7).
G.f.: 1/(1 - x - x^6/(1 - x)^6).

A107025 Binomial transform of the expansion of 1/(1-x^5-x^6).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 938, 1808, 3459, 6826, 14198, 30960, 69143, 154433, 340006, 734561, 1561313, 3286129, 6900097, 14542101, 30855957, 65908862, 141395972, 303745077, 651763377, 1395140215, 2978858672
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Comments

In general, the binomial transform of 1/(1-x^r-x^(r+1)) is given by (1-x)^r/((1-x)^(r+1)-x^r), with a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k,(r+1)k) = Sum_{k=0..floor((r+1)n/r)} binomial(k,(r+1)n-r*k).
Number of compositions of 6*n into parts 5 and 6. - Seiichi Manyama, Jun 22 2024

Crossrefs

Formula

G.f.: (1-x)^5/((1-x)^6-x^5).
a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+7a(n-5)-a(n-6).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 6k).
a(n) = Sum_{k=0..floor(6n/5)} binomial(k, 6n-5k).
a(n) = A017837(6*n). - Seiichi Manyama, Jun 22 2024

A373905 a(n) = Sum_{k=0..floor(n/3)} binomial(n+3*k,n-3*k).

Original entry on oeis.org

1, 1, 1, 2, 8, 29, 86, 224, 554, 1381, 3556, 9382, 24901, 65737, 172321, 450017, 1174985, 3072365, 8044478, 21074012, 55199573, 144535714, 378366976, 990441502, 2592800365, 6787973872, 17771619370, 46527959417, 121813193825, 318910531073, 834913179137
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+3*k,n-3*k));

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 21*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: 1/(1 - x - x^3/(1 - x)^5).

A373913 Number of compositions of 8*n into parts 7 and 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6437, 12888, 24464, 44728, 80428, 146320, 278104, 564929, 1225811, 2778772, 6396236, 14620646, 32760586, 71565796, 152344397, 316911454, 647536777, 1308456096, 2635130392, 5330198752, 10896635912
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^7/(1-x)^7),{x,0,40}],x] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,9,-1},{1,1,1,1,1,1,1,2},40] (* Harvey P. Dale, Jul 29 2024 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n+k, n-7*k));

Formula

a(n) = A017857(8*n).
a(n) = Sum_{k=0..floor(n/7)} binomial(n+k,n-7*k).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 9*a(n-7) - a(n-8).
G.f.: 1/(1 - x - x^7/(1 - x)^7).

A099101 Quintisection of 1/(1-x^3-x^4).

Original entry on oeis.org

1, 0, 3, 5, 16, 43, 113, 316, 839, 2301, 6204, 16855, 45665, 123800, 335659, 909845, 2466760, 6686979, 18128529, 49145300, 133231279, 361184653, 979156724, 2654456239, 7196122817, 19508406192, 52886508243, 143373224101
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Crossrefs

Cf. A099099.

Formula

a(n)=sum{k=0..floor(5n/3), binomial(k, 5n-3k)}.
a(n)=A017817(5n).
G.f.: (1+x)*(x^2+x-1) / ( -1+5*x^2+6*x^3+x^4 ). - R. J. Mathar, Feb 19 2015
Showing 1-5 of 5 results.