cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A017837 Expansion of 1/(1 - x^5 - x^6).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 2, 6, 15, 20, 15, 7, 8, 21, 35, 35, 22, 15, 29, 56, 70, 57, 37, 44, 85, 126, 127, 94, 81, 129, 211, 253, 221, 175, 210, 340, 464, 474, 396, 385, 550, 804, 938, 870, 781, 935, 1354, 1742, 1808, 1651, 1716, 2289, 3096
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts 5 and 6. - Joerg Arndt, Jun 27 2013

Crossrefs

Column 5 of A306713.
Cf. A099132.

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^5-x^6))); // Vincenzo Librandi, Jun 27 2013
    
  • Magma
    I:=[1,0,0,0,0,1]; [n le 6 select I[n] else Self(n-5)+Self(n-6): n in [1..70]]; // Vincenzo Librandi, Jun 27 2013
  • Mathematica
    CoefficientList[Series[1 / (1 - Total[x^Range[5, 6]]), {x, 0, 50}], x] (* Vincenzo Librandi Jun 27 2013 *)
  • PARI
    Vec(1/(1-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

a(n) = a(n-6) + a(n-5). - Jon E. Schoenfield, Aug 07 2006

A306680 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^(k+1)).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 3, 5, 1, 1, 1, 2, 5, 6, 1, 1, 1, 1, 4, 8, 7, 1, 1, 1, 1, 2, 7, 13, 8, 1, 1, 1, 1, 1, 5, 12, 21, 9, 1, 1, 1, 1, 1, 2, 11, 21, 34, 10, 1, 1, 1, 1, 1, 1, 6, 21, 37, 55, 11, 1, 1, 1, 1, 1, 1, 2, 16, 37, 65, 89, 12
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2019

Keywords

Examples

			A(4,1) = A306713(4,1) = 5, A(4,2) = A306713(8,2) = 4.
Square array begins:
   1,  1,  1,  1,  1,  1, 1, 1, 1, ...
   2,  1,  1,  1,  1,  1, 1, 1, 1, ...
   3,  2,  1,  1,  1,  1, 1, 1, 1, ...
   4,  3,  2,  1,  1,  1, 1, 1, 1, ...
   5,  5,  4,  2,  1,  1, 1, 1, 1, ...
   6,  8,  7,  5,  2,  1, 1, 1, 1, ...
   7, 13, 12, 11,  6,  2, 1, 1, 1, ...
   8, 21, 21, 21, 16,  7, 2, 1, 1, ...
   9, 34, 37, 37, 36, 22, 8, 2, 1, ...
		

Crossrefs

Columns 0-9 give A000027(n+1), A000045(n+1), A005251(n+1), A003522, A005676, A099132, A293169, A306721, A306752, A306753.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n - j, k*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..n} binomial(n-j,k*j).
A(n,k) = A306713(k*n,k) for k > 0.

A293169 a(n) = Sum_{k=0..n} binomial(k, 6*(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 925, 1718, 3017, 5097, 8464, 14197, 24753, 45697, 89150, 180254, 368734, 748924, 1493990, 2914906, 5565127, 10434412, 19322901, 35583926, 65615746, 121847272, 228638698, 433747259, 830227401, 1597653852, 3078928619, 5922703731, 11347651254
Offset: 0

Views

Author

N. J. A. Sloane, Oct 17 2017

Keywords

Crossrefs

Programs

  • Maple
    f:=n-> add( binomial(k, 6*(n-k)), k=0..n);
    [seq(f(n),n=0..30)];
  • Mathematica
    Table[Sum[Binomial[k,6(n-k)],{k,0,n}],{n,0,40}] (* or *)  LinearRecurrence[{6,-15,20,-15,6,-1,1},{1,1,1,1,1,1,1},50] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    Vec((1 - x)^5 / (1 - 6*x + 15*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6 - x^7) + O(x^30)) \\ Colin Barker, Oct 18 2017

Formula

From Colin Barker, Oct 17 2017: (Start)
G.f.: (1 - x)^5 / (1 - 6*x + 15*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6 - x^7).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + a(n-7) for n>6.
(End)
Showing 1-3 of 3 results.