A107025
Binomial transform of the expansion of 1/(1-x^5-x^6).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 938, 1808, 3459, 6826, 14198, 30960, 69143, 154433, 340006, 734561, 1561313, 3286129, 6900097, 14542101, 30855957, 65908862, 141395972, 303745077, 651763377, 1395140215, 2978858672
Offset: 0
A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A369794
Expansion of 1/(1 - x^5/(1-x)^6).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 253, 474, 870, 1651, 3367, 7372, 16762, 38183, 85290, 185573, 394555, 826752, 1724816, 3613968, 7642004, 16313856, 35052905, 75487110, 162349105, 348018300, 743376838, 1583718457, 3370144462, 7173308802, 15285181447
Offset: 0
A099132
Quintisection of 1/(1-x^5-x^6).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 253, 464, 804, 1354, 2289, 4005, 7372, 14198, 28033, 55523, 108699, 208982, 394555, 734561, 1357136, 2504932, 4643816, 8671852, 16313856, 30855957, 58502733, 110882143, 209689343, 395358538, 743376838
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3646
- V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,5).
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1,1)
-
LinearRecurrence[{5,-10,10,-5,1,1},{1,1,1,1,1,1},40] (* Harvey P. Dale, Aug 20 2012 *)
-
Vec((1-x)^4/((1-x)^5-x^6) + O(x^40)) \\ Michel Marcus, Sep 06 2017
A339089
Number of compositions (ordered partitions) of n into distinct parts congruent to 5 mod 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 4, 1, 0, 0, 0, 6, 4, 1, 0, 0, 0, 6, 6, 1, 0, 0, 0, 12, 6, 1, 0, 0, 0, 18, 8, 1, 0, 0, 24, 24, 8, 1, 0, 0, 24, 30, 10, 1, 0, 0, 48, 42, 10, 1, 0, 0, 72, 48, 12, 1, 0, 0, 120, 60, 12, 1, 0, 120, 144
Offset: 0
a(33) = 6 because we have [17, 11, 5], [17, 5, 11], [11, 17, 5], [11, 5, 17], [5, 17, 11] and [5, 11, 17].
Cf.
A016969,
A017837,
A032020,
A032021,
A109702,
A281244,
A337547,
A337548,
A339059,
A339060,
A339086,
A339087,
A339088.
-
nmax = 86; CoefficientList[Series[Sum[k! x^(k (3 k + 2))/Product[1 - x^(6 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
A373961
Number of compositions of 6*n-1 into parts 5 and 6.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 15, 44, 129, 340, 804, 1742, 3550, 7009, 13835, 28033, 58993, 128136, 282569, 622575, 1357136, 2918449, 6204578, 13104675, 27646776, 58502733, 124411595, 265807567, 569552644, 1221316021, 2616456236, 5595314908, 11944318042, 25466629978
Offset: 1
A373962
Number of compositions of 6*n-2 into parts 5 and 6.
Original entry on oeis.org
0, 1, 3, 6, 10, 15, 22, 37, 81, 210, 550, 1354, 3096, 6646, 13655, 27490, 55523, 114516, 242652, 525221, 1147796, 2504932, 5423381, 11627959, 24732634, 52379410, 110882143, 235293738, 501101305, 1070653949, 2291969970, 4908426206, 10503741114, 22448059156
Offset: 1
-
LinearRecurrence[{6,-15,20,-15,7,-1},{0,1,3,6,10,15},40] (* Harvey P. Dale, Nov 16 2024 *)
-
a(n) = sum(k=0, n\5, binomial(n+k, n-2-5*k));
A373963
Number of compositions of 6*n-3 into parts 5 and 6.
Original entry on oeis.org
0, 0, 1, 4, 10, 20, 35, 57, 94, 175, 385, 935, 2289, 5385, 12031, 25686, 53176, 108699, 223215, 465867, 991088, 2138884, 4643816, 10067197, 21695156, 46427790, 98807200, 209689343, 444983081, 946084386, 2016738335, 4308708305, 9217134511, 19720875625
Offset: 1
A373964
Number of compositions of 6*n-4 into parts 5 and 6.
Original entry on oeis.org
0, 0, 0, 1, 5, 15, 35, 70, 127, 221, 396, 781, 1716, 4005, 9390, 21421, 47107, 100283, 208982, 432197, 898064, 1889152, 4028036, 8671852, 18739049, 40434205, 86861995, 185669195, 395358538, 840341619, 1786426005, 3803164340, 8111872645, 17329007156
Offset: 1
A127840
a(1)=1, a(2)=...=a(6)=0, a(n) = a(n-6)+a(n-5) for n>6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 2, 6, 15, 20, 15, 7, 8, 21, 35, 35, 22, 15, 29, 56, 70, 57, 37, 44, 85, 126, 127, 94, 81, 129, 211, 253, 221, 175, 210, 340, 464, 474, 396, 385, 550
Offset: 1
Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007
- S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007. [Apparently unpublished as of May 2016]
- Colin Barker, Table of n, a(n) for n = 1..1000
- Sadjia Abbad and Hacène Belbachir, The r-Fibonacci polynomial and its companion sequences linked with some classical sequences, Integers (2025), Vol. 25, Art. No. A38. See p. 17.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1).
Showing 1-10 of 10 results.
Comments