A369809
Expansion of 1/(1 - x^6/(1-x)^7).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 925, 1730, 3108, 5565, 10388, 20944, 45697, 104673, 242481, 553455, 1229305, 2650221, 5565127, 11465758, 23397041, 47757235, 98317135, 205108561, 433747259, 926655972, 1989584722, 4271185538, 9133958765, 19421679515
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))
-
a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));
A368475
Expansion of o.g.f. (1-x)^5/((1-x)^5 - x^4).
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 15, 35, 71, 136, 265, 550, 1211, 2732, 6126, 13485, 29191, 62648, 134408, 289656, 627401, 1363124, 2963186, 6434484, 13951852, 30221185, 65442625, 141745045, 307137901, 665732417, 1443184210, 3128438335, 6780867186, 14696002913, 31848721632
Offset: 0
Since there are C(4,4) = 1 type of 4, C(5,4) = 5 types of 5, C(6,4) = 15 types of 6, C(7,4) = 35 types of 7, C(8,4) = 70 types of 8, and (12,4) = 495 types of 12, we can write 12 in the following ways:
12: 495 ways;
8+4: 70 ways;
7+5: 175 ways;
6+6: 225 ways;
5+7: 175 ways;
4+8: 70 ways;
4+4+4: 1 way, for a total of 1211 ways.
-
CoefficientList[Series[(1 - x)^5/((1 - x)^5 - x^4), {x, 0, 50}], x] (* Wesley Ivan Hurt, Dec 26 2023 *)
-
Vec((1-x)^5/((1-x)^5 - x^4) + O(x^40)) \\ Michel Marcus, Dec 27 2023
A373961
Number of compositions of 6*n-1 into parts 5 and 6.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 15, 44, 129, 340, 804, 1742, 3550, 7009, 13835, 28033, 58993, 128136, 282569, 622575, 1357136, 2918449, 6204578, 13104675, 27646776, 58502733, 124411595, 265807567, 569552644, 1221316021, 2616456236, 5595314908, 11944318042, 25466629978
Offset: 1
A373962
Number of compositions of 6*n-2 into parts 5 and 6.
Original entry on oeis.org
0, 1, 3, 6, 10, 15, 22, 37, 81, 210, 550, 1354, 3096, 6646, 13655, 27490, 55523, 114516, 242652, 525221, 1147796, 2504932, 5423381, 11627959, 24732634, 52379410, 110882143, 235293738, 501101305, 1070653949, 2291969970, 4908426206, 10503741114, 22448059156
Offset: 1
-
LinearRecurrence[{6,-15,20,-15,7,-1},{0,1,3,6,10,15},40] (* Harvey P. Dale, Nov 16 2024 *)
-
a(n) = sum(k=0, n\5, binomial(n+k, n-2-5*k));
A373963
Number of compositions of 6*n-3 into parts 5 and 6.
Original entry on oeis.org
0, 0, 1, 4, 10, 20, 35, 57, 94, 175, 385, 935, 2289, 5385, 12031, 25686, 53176, 108699, 223215, 465867, 991088, 2138884, 4643816, 10067197, 21695156, 46427790, 98807200, 209689343, 444983081, 946084386, 2016738335, 4308708305, 9217134511, 19720875625
Offset: 1
A373964
Number of compositions of 6*n-4 into parts 5 and 6.
Original entry on oeis.org
0, 0, 0, 1, 5, 15, 35, 70, 127, 221, 396, 781, 1716, 4005, 9390, 21421, 47107, 100283, 208982, 432197, 898064, 1889152, 4028036, 8671852, 18739049, 40434205, 86861995, 185669195, 395358538, 840341619, 1786426005, 3803164340, 8111872645, 17329007156
Offset: 1
Showing 1-6 of 6 results.
Comments