A099133 4^(n-1)*Fibonacci(n).
0, 1, 4, 32, 192, 1280, 8192, 53248, 344064, 2228224, 14417920, 93323264, 603979776, 3909091328, 25300041728, 163745628160, 1059783180288, 6859062771712, 44392781971456, 287316132233216, 1859549040476160, 12035254277636096, 77893801758162944
Offset: 0
Examples
G.f. = x + 4*x^2 + 32*x^3 + 192*x^4 + 1280*x^5 + 8192*x^6 + 53248*x^7 + ...
References
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivré Formula, March 2014; Preprint on ResearchGate.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,16).
Programs
-
Mathematica
Join[{a=0,b=1},Table[c=4*b+16*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2011*) Table[4^(n-1) Fibonacci[n],{n,0,20}] (* Harvey P. Dale, Aug 22 2012 *) LinearRecurrence[{4,16},{0,1},30] (* Harvey P. Dale, Aug 22 2012 *)
-
PARI
a(n) = 4^(n-1)*fibonacci(n); \\ Michel Marcus, Jan 10 2014
Formula
G.f.: x/(1-4*x-16*x^2).
a(n) = 4*a(n-1) + 16*a(n-2).
a(n) = (2+2*sqrt(5))^n/(4*sqrt(5))-(2-sqrt(5))^n/(4*sqrt(5)).
a(-n) = -(-1)^n * a(n) / 16^n for all n in Z. - Michael Somos, Mar 18 2014
Comments