cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099133 4^(n-1)*Fibonacci(n).

Original entry on oeis.org

0, 1, 4, 32, 192, 1280, 8192, 53248, 344064, 2228224, 14417920, 93323264, 603979776, 3909091328, 25300041728, 163745628160, 1059783180288, 6859062771712, 44392781971456, 287316132233216, 1859549040476160, 12035254277636096, 77893801758162944
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

Binomial transform of A099134.
Second binomial transform of x/(1-20x^2), or (0,1,0,20,0,400,0,8000,....).
In general k^(n-1)*Fibonacci(n) has g.f. x/(1-kx-k^2x^2).
The ratio a(n+1)/a(n) converges to 4 times the golden ratio as n approaches infinity. In general, the ratio a(n+1)/a(n) of the sequence which is the solution to the linear recurrence relation a(n) = m*a(n-1)+m^2*a(n-2) with a(0)=0 and a(1) = 1 converges to m times the golden ratio as n approaches infinity where m is a positive integer. - Felix P. Muga II, Mar 10 2014

Examples

			G.f. = x + 4*x^2 + 32*x^3 + 192*x^4 + 1280*x^5 + 8192*x^6 + 53248*x^7 + ...
		

References

  • F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivré Formula, March 2014; Preprint on ResearchGate.

Crossrefs

Cf. A000045, A099012, A085449. Fourth row of A234357.

Programs

Formula

G.f.: x/(1-4*x-16*x^2).
a(n) = 4*a(n-1) + 16*a(n-2).
a(n) = (2+2*sqrt(5))^n/(4*sqrt(5))-(2-sqrt(5))^n/(4*sqrt(5)).
a(-n) = -(-1)^n * a(n) / 16^n for all n in Z. - Michael Somos, Mar 18 2014