cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099279 Squares of A001076.

Original entry on oeis.org

0, 1, 16, 289, 5184, 93025, 1669264, 29953729, 537497856, 9645007681, 173072640400, 3105662519521, 55728852710976, 1000013686278049, 17944517500293904, 322001301319012225, 5778078906241926144, 103683419011035658369, 1860523463292399924496, 33385738920252162982561
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

For the generalized Fibonacci sequences U(n-1;a) = (ap(a)^n - am(a)^n)/(ap(a) - am(a)) with ap(a) = (a + sqrt(a^2+4))/2, am(a) = (a - sqrt(a^2+4))/2, a from the integers, one has for the squared sequences U(n-1;a)^2 = (2*T(n,(a^2+2)/2) - 2*(-1)^n)/(a^2+4). Here T(n,x) are Chebyshev's polynomials of the first kind (see A053120). Therefore the o.g.f. for the squared sequence is x*(1-x)/((1+x)*(1-(a^2+2)*x+x^2)) = x*(1-x)/(1 - (a^2+1)*x - (a^2+1)*x^2 + x^3). For this example a=4.
Unsigned member r=-16 of the family of Chebyshev sequences S_r(n) defined in A092184.
(-1)^(n+1)*a(n) = S_{-16}(n), n >= 0, defined in A092184.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 4 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 4 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Mar 12 2023

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, this sequence, A099365, A099366, A099367, A099369, A099372, A099374.

Programs

  • Magma
    [Fibonacci(3*n)^2/4: n in [0..30]]; // G. C. Greubel, Aug 18 2022
  • Maple
    with (combinat):seq(fibonacci(n,4)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008
    nmax:=48: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax/3 do a(n):=a(n-1)+A001654(3*n-2) od: seq(a(n),n=0..nmax/3); # Johannes W. Meijer, Sep 22 2010
  • Mathematica
    LinearRecurrence[{17,17,-1},{0,1,16},30] (* Harvey P. Dale, Mar 26 2012 *)
    Fibonacci[3*Range[0, 30]]^2/4 (* G. C. Greubel, Aug 18 2022 *)
  • MuPAD
    numlib::fibonacci(3*n)^2/4 $ n = 0..35; // Zerinvary Lajos, May 13 2008
    
  • PARI
    my(x='x+O('x^99)); concat([0], Vec(x*(1-x)/((1-18*x+x^2)*(1+x)))) \\ Altug Alkan, Dec 17 2017
    
  • Sage
    [(fibonacci(3*n))^2/4 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = A001076(n)^2.
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3), n >= 3, a(0)=0, a(1)=1, a(2)=16.
a(n) = 18*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2, a(0)=0, a(1)=1.
a(n) = (T(n, 9) - (-1)^n)/10 with Chebyshev's T(n, x) polynomials of the first kind. T(n, 9) = A023039(n).
G.f.: x*(1-x)/((1+x)*(1-18*x+x^2)) = x*(1-x)/(1-17*x-17*x^2+x^3).
a(n) = a(n-1) + A001654(3*n-2) with a(0)=0, where A001654 are the golden rectangle numbers. - Johannes W. Meijer, Sep 22 2010
a(n+1) = (1 + (-1)^n)/2 + 16*Sum_{r=1..n} ( r*a(n+1-r) ). - Michael A. Allen, Mar 12 2023
E.g.f.: exp(-x)*(exp(10*x)*cosh(4*sqrt(5)*x) - 1)/10. - Stefano Spezia, Apr 06 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (2 + sqrt(5))/4 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024