A099279 Squares of A001076.
0, 1, 16, 289, 5184, 93025, 1669264, 29953729, 537497856, 9645007681, 173072640400, 3105662519521, 55728852710976, 1000013686278049, 17944517500293904, 322001301319012225, 5778078906241926144, 103683419011035658369, 1860523463292399924496, 33385738920252162982561
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..750
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (17,17,-1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
[Fibonacci(3*n)^2/4: n in [0..30]]; // G. C. Greubel, Aug 18 2022
-
Maple
with (combinat):seq(fibonacci(n,4)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008 nmax:=48: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax/3 do a(n):=a(n-1)+A001654(3*n-2) od: seq(a(n),n=0..nmax/3); # Johannes W. Meijer, Sep 22 2010
-
Mathematica
LinearRecurrence[{17,17,-1},{0,1,16},30] (* Harvey P. Dale, Mar 26 2012 *) Fibonacci[3*Range[0, 30]]^2/4 (* G. C. Greubel, Aug 18 2022 *)
-
MuPAD
numlib::fibonacci(3*n)^2/4 $ n = 0..35; // Zerinvary Lajos, May 13 2008
-
PARI
my(x='x+O('x^99)); concat([0], Vec(x*(1-x)/((1-18*x+x^2)*(1+x)))) \\ Altug Alkan, Dec 17 2017
-
Sage
[(fibonacci(3*n))^2/4 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
Formula
a(n) = A001076(n)^2.
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3), n >= 3, a(0)=0, a(1)=1, a(2)=16.
a(n) = 18*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2, a(0)=0, a(1)=1.
a(n) = (T(n, 9) - (-1)^n)/10 with Chebyshev's T(n, x) polynomials of the first kind. T(n, 9) = A023039(n).
G.f.: x*(1-x)/((1+x)*(1-18*x+x^2)) = x*(1-x)/(1-17*x-17*x^2+x^3).
a(n) = a(n-1) + A001654(3*n-2) with a(0)=0, where A001654 are the golden rectangle numbers. - Johannes W. Meijer, Sep 22 2010
a(n+1) = (1 + (-1)^n)/2 + 16*Sum_{r=1..n} ( r*a(n+1-r) ). - Michael A. Allen, Mar 12 2023
E.g.f.: exp(-x)*(exp(10*x)*cosh(4*sqrt(5)*x) - 1)/10. - Stefano Spezia, Apr 06 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (2 + sqrt(5))/4 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024
Comments