Original entry on oeis.org
0, 1, 81, 6724, 558009, 46308025, 3843008064, 318923361289, 26466795978921, 2196425142889156, 182276820063821025, 15126779640154255921, 1255340433312739420416, 104178129185317217638609, 8645529381948016324584129, 717474760572500037722844100, 59541759598135555114671476169
Offset: 0
- Stefano Spezia, Table of n, a(n) for n = 0..500
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (82,82,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{82,82,-1},{0,1,81},17] (* Stefano Spezia, Apr 06 2023 *)
A099365
Squares of A052918(n-1) (generalized Fibonacci).
Original entry on oeis.org
0, 1, 25, 676, 18225, 491401, 13249600, 357247801, 9632441025, 259718659876, 7002771375625, 188815108482001, 5091005157638400, 137268324147754801, 3701153746831741225, 99793882840309258276, 2690733682941518232225
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..650
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (26,26,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
[(2/29)*(Evaluate(ChebyshevFirst(n), 27/2) -(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 21 2022
-
with (combinat):seq(fibonacci(n,5)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008
-
LinearRecurrence[{26,26,-1},{0,1,25},30] (* Harvey P. Dale, Sep 25 2019 *)
-
def A099365(n): return (2/29)*(chebyshev_T(n, 27/2) - (-1)^n)
[A099365(n) for n in (0..30)] # G. C. Greubel, Aug 21 2022
A099369
Squares of A041025(n-1), n>=1, (generalized Fibonacci).
Original entry on oeis.org
0, 1, 64, 4225, 278784, 18395521, 1213825600, 80094094081, 5284996383744, 348729667233025, 23010873040995904, 1518368891038496641, 100189335935499782400, 6610977802851947141761, 436224345652293011573824
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (65,65,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{65,65,-1},{0,1,64},20] (* Harvey P. Dale, Oct 05 2021 *)
Original entry on oeis.org
0, 1, 100, 10201, 1040400, 106110601, 10822240900, 1103762461201, 112572948801600, 11481337015302001, 1170983802612002500, 119428866529408953001, 12180573402197101203600
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (101,101,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{101,101,-1},{0,1,100},20] (* Harvey P. Dale, Nov 10 2021 *)
Original entry on oeis.org
0, 1, 49, 2500, 127449, 6497401, 331240000, 16886742601, 860892632649, 43888637522500, 2237459621014849, 114066552034234801, 5815156694124960000, 296458924848338725201, 15113590010571150025249, 770496631614280312562500
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (50,50,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{50,50,-1},{0,1,49},20] (* Harvey P. Dale, Jul 27 2023 *)
Original entry on oeis.org
0, 1, 36, 1369, 51984, 1974025, 74960964, 2846542609, 108093658176, 4104712468081, 155870980128900, 5918992532430121, 224765845252215696, 8535183127051766329, 324112192982714904804, 12307728150216114616225
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (37,37,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
with (combinat):seq(fibonacci(n,6)^2,n=0..15); # Zerinvary Lajos, Apr 09 2008
-
LinearRecurrence[{37,37,-1},{0,1,36},20] (* Harvey P. Dale, Sep 23 2018 *)
A214995
Power ceiling-floor sequence of (golden ratio)^6.
Original entry on oeis.org
18, 322, 5779, 103699, 1860804, 33390772, 599173093, 10751724901, 192931875126, 3462022027366, 62123464617463, 1114760341086967, 20003562674947944, 358949367807976024, 6441085057868620489, 115580581673827192777, 2074009385071020849498
Offset: 0
a(0) = ceiling(r) = [17.9] = 18 , where r=(1+sqrt(5))^6;
a(1) = floor(18*r) = 322; a(2) = ceiling(322*r ) = 5779.
-
x = GoldenRatio^6; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A007805 *)
Table[p2[n], {n, 0, z}] (* A156085 *)
Table[p3[n], {n, 0, z}] (* A214995 *)
Table[p4[n], {n, 0, z}] (* A049660 *)
Table[p4[n] - p1[n], {n, 0, z}] (* A049660 *)
Table[p3[n] - p2[n], {n, 0, z}] (* A099279 *)
LinearRecurrence[{17,17,-1},{18,322,5779},30] (* Harvey P. Dale, Feb 25 2013 *)
-
Vec((18+16*x-x^2)/((1+x)*(1-18*x+x^2)) + O(x^20)) \\ Colin Barker, Mar 04 2016
Showing 1-7 of 7 results.
Comments