cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A100270 Smallest odd prime of the form x^2^n + y^2^n such that x^2^k + y^2^k is prime for k=0,1,...,n-1.

Original entry on oeis.org

3, 5, 17, 257, 65537, 43969786939269621239851427694879659964972193373572605276547046131629468448105886917662485986957414531083768961
Offset: 0

Views

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

The first five terms are the Fermat primes A019434, which are obtained with x=1 and y=2. Can a solution {x,y} be found for any n? The Mathematica program, for each n, generates numbers of the form x^2^n + y^2^n in order of increasing magnitude; it stops when all the x^2^k + y^2^k are prime for k=0,...,n.

Examples

			a(5) = 720^32+2669^32 is prime, as are 720^16+2669^16, 720^8+2669^8, 720^4+2669^4, 720^2+2669^2 and 720+2669.
		

Crossrefs

Programs

  • Mathematica
    Table[pwr=2^n; xmax=2; r=Range[xmax]+1; num=(r-1)^pwr+r^pwr; While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; allPrime=True; k=0; While[k<=n&&allPrime, allPrime=PrimeQ[x^2^k+y^2^k]; k++ ]; !allPrime]; p, {n, 0, 5}]

A100268 Primes of the form x^4 + y^4 with x^2 + y^2 and x+y also prime.

Original entry on oeis.org

2, 17, 97, 257, 641, 1297, 4177, 4721, 12401, 15937, 16561, 38561, 65537, 83537, 89041, 105601, 140321, 160081, 204481, 283937, 284881, 384817, 391921, 411361, 462097, 471617, 531457, 643217, 824641, 838561, 1049201, 1089841, 1342897
Offset: 1

Views

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

The first Mathematica program generates numbers of the form x^4 + y^4 in order of increasing magnitude; it accepts a number when all the x^2^k + y^2^k are prime for k=0,1,2.

Crossrefs

Programs

  • Mathematica
    n=2; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; allPrime=True; k=0; While[k<=n&&allPrime, allPrime=PrimeQ[x^2^k+y^2^k]; k++ ]; !allPrime]; p, {40}]
    With[{nn=40},Select[Union[Transpose[Select[Total/@{#^4,#^2,#}&/@ Tuples[ Range[nn],2],AllTrue[#,PrimeQ]&]][[1]]],#<=nn^4+1&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 23 2015 *)

A100269 Primes of the form x^8 + y^8 with x^4 + y^4, x^2 + y^2 and x+y also prime.

Original entry on oeis.org

2, 257, 65537, 2724909545357921, 3282116715437377, 40213879071634241, 147578912575757441, 303879829574456257, 697576026529536481, 1316565220482548321, 2860283484326400961, 4080251077774711937
Offset: 1

Views

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

The Mathematica program generates numbers of the form x^8 + y^8 in order of increasing magnitude; it accepts a number when all the x^2^k + y^2^k are prime for k=0,1,2,3.

Crossrefs

Programs

  • Mathematica
    n=3; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; allPrime=True; k=0; While[k<=n&&allPrime, allPrime=PrimeQ[x^2^k+y^2^k]; k++ ]; !allPrime]; p, {20}]

A182288 Primes of form a^2+b^2 such that |a|+|b| is prime of the form 4k+3.

Original entry on oeis.org

5, 29, 37, 61, 73, 101, 181, 193, 241, 269, 277, 293, 349, 409, 521, 541, 593, 661, 701, 929, 937, 1009, 1069, 1109, 1117, 1129, 1217, 1237, 1249, 1289, 1609, 1741, 1753, 1789, 1801, 2029, 2053, 2161, 2221, 2269, 2357, 2389, 2521, 2557, 2609, 2633, 2741, 2753
Offset: 1

Views

Author

Thomas Ordowski, Apr 23 2012

Keywords

Examples

			The prime 29=5^2+2^2 such that 5+2=7 is prime of form 4k+3.
		

Crossrefs

Cf. A099332.

Programs

  • Mathematica
    nn = 60; t = {}; Do[p1 = a^2 + b^2; p2 = a + b; If[p1 < nn^2 && PrimeQ[p1] && Mod[p2, 4] == 3 && PrimeQ[p2], AppendTo[t, p1]], {a, nn}, {b, a}]; Sort[t] (* T. D. Noe, Apr 23 2012 *)
  • PARI
    list(lim)=my(v=List(),t);for(a=1,sqrt(lim),forstep(b=(2-a)%4+1, min(a,sqrt(lim-a^2)),4,if(isprime(a+b)&&isprime(t=a^2+b^2), listput(v,t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 24 2012

Extensions

Extended by T. D. Noe, Apr 23 2012
Showing 1-4 of 4 results.