A099376 An inverse Chebyshev transform of x^3.
0, 1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- H. Mühle, Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces, arXiv:1701.02109 [math.CO], 2017.
Programs
-
Magma
[Catalan(n+2) -2*Catalan(n+1): n in [0..30]]; // G. C. Greubel, May 05 2021
-
Mathematica
Table[CatalanNumber[n+2] -2CatalanNumber[n+1], {n, 0, 30}] (* or *) Table[4 Binomial[2#+3, #]/(#+4) &[n-1], {n, 0, 30}] (* Michael De Vlieger, Jan 10 2017, latter after Harvey P. Dale at A002057 *)
-
PARI
{a(n)= if(n<1, 0, n++; 2* binomial(2*n, n-2)/n)} /* Michael Somos, Apr 11 2007 */
-
Sage
[catalan_number(n+2) -2*catalan_number(n+1) for n in (0..30)] # G. C. Greubel, May 05 2021
Formula
G.f.: (1-2*x)^4*( sqrt((1+2*x)/(1-2*x)) - 1)^8/(256*x^5).
a(n) = Sum_{k=0..n} (k+1)*C(n, (n-k)/2)*(-1)^k*( C(3, k) -3*C(2, k) +3*C(1, k) -C(0, k) )*(1+(-1)^(n-k))/(n+k+2).
a(n) = A002057(n-1). - Michael Somos, Jul 31 2005
Given an ellipse with eccentricity e and major and minor axis a and b respectively, then ((a-b)/ (a+b))^2 = 1*(e/2)^4 +4*(e/2)^6 +14*(e/2)^8 +48*(e/2)^10 + ... - Michael Somos, Apr 11 2007
E.g.f.: exp(2x)*(Bessel_I(1,2x) - Bessel_I(3,2x)). - Paul Barry, Jun 04 2007
D-finite with recurrence (n+3)*(n-1)*a(n) -2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Sep 26 2012
G.f.: ( (1-2*x)*c(x) - (1-x) )/x^2, where c(x) is the gf of A000108. - G. C. Greubel, May 05 2021
From Peter Bala, Aug 30 2023: (Start)
a(n) = 2*n/((n+2)*(n+3)) * binomial(2*n+2, n+1).
a(n) = 2*Sum_{k = 0..n-1} 1/(n+1)*binomial(n+1, k)*binomial(n+1, k+2). (End)
Comments