A099594 Array read by antidiagonals: poly-Bernoulli numbers B(-k,n).
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 46, 46, 16, 1, 1, 32, 146, 230, 146, 32, 1, 1, 64, 454, 1066, 1066, 454, 64, 1, 1, 128, 1394, 4718, 6902, 4718, 1394, 128, 1, 1, 256, 4246, 20266, 41506, 41506, 20266, 4246, 256, 1, 1, 512, 12866, 85310, 237686, 329462, 237686, 85310, 12866, 512, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, ... 1, 4, 14, 46, 146, 454, ... 1, 8, 46, 230, 1066, 4718, ... 1, 16, 146, 1066, 6902, 41506, ... 1, 32, 454, 4718, 41506, 329462, ... ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, arXiv:2104.13654 [math.CO], 2021. See Table 1 (a) p. 4.
- Beáta Bényi, Advances in Bijective Combinatorics, Ph. D. Dissertation, Doctoral School of Mathematics and Computer Science, University of Szeged, Bolyai Institute, 2014. See Table 1.
- Beáta Bényi and Peter Hajnal, Combinatorics of poly-Bernoulli numbers, arXiv:1510.05765 [math.CO], 2015.
- Beata Bényi and Peter Hajnal, Combinatorial properties of poly-Bernoulli relatives, arXiv preprint arXiv:1602.08684 [math.CO], 2016.
- Beata Benyi and Peter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- Beáta Bényi and Matthieu Josuat-Vergès, Combinatorial proof of an identity on Genocchi numbers, arXiv:2010.10060 [math.CO], 2020.
- Beáta Bényi and Gábor V. Nagy, Bijective enumerations of Γ-free 0-1 matrices, arXiv:1707.06899 [math.CO], 2017.
- Beáta Bényi and José Luis Ramírez, On q-poly-Bernoulli numbers arising from combinatorial interpretations, arXiv:1909.09949 [math.CO], 2019.
- Beáta Bényi and José Luis Ramírez, Poly-Cauchy numbers - the combinatorics behind, arXiv:2105.04791 [math.CO], 2021.
- Beáta Bényi and José Luis Ramírez, Poly-Cauchy Numbers of the Second Kind-the Combinatorics Behind, Enumerative Comb. Appl. (2022) Vol. 2, No. 1, Art. #S2R1.
- Chad Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, INTEGERS Vol. 8 (2008), #A02.
- David Callan, Permutations whose excedance positions are those before 1
- Frédéric Chapoton and Vincent Pilaud, Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, arXiv:2201.06896 [math.CO], 2022. See p. 12.
- Peter G. Jeavons and Martin C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (1995), 327-339.
- Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
- Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Anatol N. Kirillov, On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (0.1).
- D. E. Knuth, Notes on four arrays of numbers arising from the enumeration of CRC constraints and min-and-max-closed constraints, May 06 2024. Mentions this sequence.
- Stéphane Launois, Combinatorics of H-primes in quantum matrices, Journal of Algebra, Volume 309, Issue 1, 2007, Pages 139-167.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- H. A. Witek, G. Mos and C.-P. Chou, Zhang-Zhang Polynomials of Regular 3-and 4-tier Benzenoid Strips, MATCH Commun. Math. Comput. Chem. 73 (2015) 427-442.
- Wikipedia, Acyclic orientation
Crossrefs
Programs
-
Maple
A:= (n, k)-> add(Stirling2(n+1, i+1)*Stirling2(k+1, i+1)* i!^2, i=0..min(n, k)): seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jan 02 2016
-
Mathematica
T[n_, k_] := Sum[(-1)^(j+n)*(1+j)^k*j!*StirlingS2[n, j], {j, 0, n}]; Table[ T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
-
PARI
T(n,k)=sum(j=0,n,(j+1)^k*sum(i=0,j,(-1)^(n+j-i)*binomial(j,i)*(j-i)^n))
-
PARI
T(n,k)=sum(j=0,min(n,k), j!^2*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2)); \\ Michel Marcus, Mar 05 2017
Formula
pB(k, n) = (-1)^n * Sum[i=0..n, (-1)^i * i! * Stirling2(n, i) / (i+1)^k ].
E.g.f.: e^(x+y) / [e^x + e^y - e^(x+y)].
T(n, k) = Sum_{j=0..n} (j+1)^k*Sum_{i=0..j} (-1)^(n+j-i)*C(j, i)*(j-i)^n. - Paul D. Hanna, Nov 04 2004
n-th row of the array = row sums of n-th power of triangle A210381. - Gary W. Adamson, Mar 21 2012
Comments