cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099776 Length of the hypotenuse of an integer right triangle with the hypotenuse being one more than the longer side. The shorter sides are just consecutive odd numbers 3, 5, 7, ...

Original entry on oeis.org

5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
Offset: 1

Views

Author

Nick Robins (nrobins(AT)hackettfreedman.com), Nov 12 2004

Keywords

Comments

Largest hypotenuse of primitive Pythagorean triangles with inradius n. (For smallest hypotenuse of PPT with inradius n, see A087484.) Essentially the same as A001844. - Lekraj Beedassy, May 08 2006
The complete triple {X(n), Y(n), Z(n)=Y(n)+1}, with XA005408(n); Y(n) = A046092(n), Z(n) = A001844(n)} may be recursively generated through the mapping W(n) -> M*W(n), where W(n) = transpose of vector [X(n) Y(n) Z(n)] and M a 3 X 3 matrix given by [1 -2 2 / 2 -1 2 / 2 -2 3 ]. Such triples correspond to successive number pair Pythagorean generators(p,q=p+1) yielding {X=p+q,Y=2p*q,Z=p^2 + q^2}. - Lekraj Beedassy, Jun 04 2006
Sum of two consecutive squares: 1^4=5, 4+9=13, 9+16=25, 16+25=41, ... - Vladimir Joseph Stephan Orlovsky, Sep 25 2009
The sequence provides all integers m > 1 such that 2*m - 1 is a square. - Vincenzo Librandi, Mar 03 2013

Programs

  • C
    #include "stdio.h"
    int main(int argc, char* argv[]){
      unsigned long i; int L = (argc>1) ? atol(argv[1]) : 50;
      for (i=(L>0) ? 1 : (L*=-1); i<=L; i++)
        printf ("%u, ", (i+1)*i*2+1);
      return 0;
    } // optional arg implemented by M. F. Hasler, Nov 03 2012
    
  • GAP
    List([1..50], n-> n^2 +(n+1)^2); # G. C. Greubel, Sep 04 2019
    
  • Magma
    [n eq 1 select 5 else Self(n-1)+4*n: n in [1..50]]; // Vincenzo Librandi, Mar 03 2013
    
  • Maple
    seq(n^2 +(n+1)^2, n=1..50); # G. C. Greubel, Sep 04 2019
  • Mathematica
    Table[n^2 +(n+1)^2, {n,50}]  (* Vladimir Joseph Stephan Orlovsky, Sep 25 2009, modified by G. C. Greubel, Sep 04 2019 *)
    RecurrenceTable[{a[1]==5, a[n]==a[n-1] +4n}, a, {n, 50}] (* Vincenzo Librandi, Mar 03 2013 *)
    LinearRecurrence[{3,-3,1},{5,13,25},50] (* Harvey P. Dale, Jul 16 2018 *)
  • PARI
    a(n)=1+2*n+2*n^2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Python
    def A099776(n): return (n<<1)*(n+1)+1 # Chai Wah Wu, Oct 01 2024
  • Sage
    [n^2 +(n+1)^2 for n in (1..50)] # G. C. Greubel, Sep 04 2019
    

Formula

a(n) = ((2*n+1)^2 -1)/2 + 1.
a(n) = a(n-1) + 4*n for n>1, a(1)=5. - Vincenzo Librandi, Nov 17 2010
From Colin Barker, Nov 03 2012: (Start)
a(n) = 1 + 2*n + 2*n^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(5 -2*x +x^2)/(1-x)^3. (End)
All other formulas given in A001844 also apply, with the restriction n>0. - M. F. Hasler, Nov 03 2012
E.g.f.: -1 +(1 +4*x +2*x^2)*exp(x). - G. C. Greubel, Sep 04 2019