cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A105817 Decimal expansion of the Fibonacci nested radical.

Original entry on oeis.org

1, 6, 6, 1, 9, 8, 2, 4, 6, 2, 3, 2, 7, 8, 1, 1, 5, 5, 7, 9, 6, 7, 6, 0, 6, 0, 8, 1, 8, 1, 5, 1, 3, 1, 2, 9, 5, 0, 5, 6, 1, 6, 7, 5, 6, 2, 4, 6, 5, 0, 3, 5, 0, 0, 8, 2, 9, 9, 0, 6, 8, 0, 6, 7, 4, 3, 0, 6, 2, 9, 7, 2, 3, 5, 9, 8, 9, 5, 7, 3, 8, 1, 0, 8, 1, 7, 1, 6, 7, 0, 4, 1, 1, 0, 8, 4, 9, 2, 6, 6, 6, 9, 2, 2, 5
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The continued fraction expression of this is A105818. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.66198246232781155796760608181513129505616756246503500829906806743...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Fibonacci[ Range[50]]]], 10, 111][[1]] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

Sqrt(1 + sqrt(1 + sqrt(2 + sqrt(3 + sqrt(5 + ... + sqrt(Fibonacci(n)=A000045)))).

A105815 Decimal expansion of the semiprime nested radical.

Original entry on oeis.org

2, 6, 6, 3, 5, 2, 5, 6, 3, 4, 8, 0, 6, 8, 5, 6, 5, 4, 4, 9, 8, 9, 4, 4, 6, 7, 3, 2, 7, 2, 1, 9, 5, 5, 1, 4, 5, 9, 9, 9, 2, 2, 9, 8, 2, 6, 8, 9, 2, 7, 2, 9, 3, 2, 9, 1, 4, 8, 3, 3, 7, 0, 5, 8, 6, 8, 0, 2, 3, 8, 8, 4, 8, 7, 9, 0, 3, 9, 3, 2, 9, 9, 3, 5, 6, 4, 3, 9, 6, 0, 5, 6, 8, 6, 4, 2, 4, 5, 5, 9, 9, 1, 4, 5, 3
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The semiprime nested radical is defined by the infinite recursion: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))). This converges by the criterion of T. Vijayaraghavan that "the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane A072449]. The continued fraction representation of this constant is A105816.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.66352563480685654498944673272195514599922982689272932914833705868...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • Steven R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, 2003, p. 8.

Crossrefs

For other nested radicals, see A072449, A083869, A099874, A099876, A099877, A099878, A099879, A105546, A105548, A105816, A239349.
Cf. A001358.

Programs

  • Mathematica
    fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Select[ Range[260], fQ[ # ] &]]], 10, 111][[1]] (* Robert G. Wilson v, May 31 2005 *)

Formula

Limit_{n -> infinity} sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))), where semiprime(n) = A001358(n).

A099878 Decimal expansion of a nested radical: Sqrt(1 + CubeRoot(2 + 4thRoot(3 + 5thRoot(4 + ...

Original entry on oeis.org

1, 5, 8, 4, 5, 4, 1, 7, 0, 9, 9, 0, 5, 5, 6, 5, 0, 0, 2, 5, 0, 9, 1, 2, 5, 4, 5, 0, 5, 5, 2, 6, 2, 9, 1, 7, 2, 9, 4, 8, 9, 4, 7, 5, 0, 7, 8, 0, 5, 9, 2, 3, 2, 9, 1, 5, 0, 2, 0, 2, 4, 9, 3, 6, 5, 8, 9, 6, 3, 0, 0, 6, 1, 9, 8, 9, 2, 6, 0, 8, 4, 0, 2, 6, 4, 8, 9, 1, 2, 2, 8, 5, 0, 7, 7, 2, 3, 8, 4, 9, 9, 7, 9, 6
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 03 2004

Keywords

Examples

			1.58454170990556500250912545055...
		

Crossrefs

Cf. A072449, A099874, A099876, A099877 for other nested radicals.

Programs

  • Mathematica
    k = 43; r = 44; While[k > 0, r = (k + r)^(1/(k + 1)); k-- ]; RealDigits[r, 10, 111][[1]] (* Robert G. Wilson v, Nov 04 2004 *)
  • PARI
    t=0;forstep(n=100,1,-1,t=(t+n)^(1/(n+1)));print(t)

A105816 Continued fraction expansion of the semiprime nested radical (A105815).

Original entry on oeis.org

2, 1, 1, 1, 34, 1, 2, 2, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 9, 7, 1, 9, 1, 5, 1, 5, 1, 2, 7, 2, 2, 3, 5, 2, 1, 10, 8, 2, 3, 1, 1, 1, 12, 1, 1, 5, 4, 4, 2, 1, 1, 2, 2, 4, 13, 2, 2, 12, 3, 11, 15, 2, 2, 2, 23, 8, 1, 1, 3, 1, 2, 8, 19, 1, 5, 2, 7, 4, 1, 82, 22, 1, 1, 1, 2, 1, 1, 9, 1, 1, 1, 15, 8, 12, 2, 11, 1, 15
Offset: 0

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The semiprime nested radical is defined by the infinite recursion: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))). This converges by the criterion of T. Vijayaraghavan that "the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane A072449].
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.66352563480685654498944673272195514599922982689272932914833705868...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 and 229.
  • S. R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

From Robert G. Wilson v: (Start)
Cf. A072449, Decimal expansion of limit of a nested radical, sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ...
Cf. A083869, a(1)=1 then a(n) is the least k>=1 such that the nested radical sqrt(a(1)^2+sqrt(a(2)^2+sqrt(a(3)^2+(....+sqrt(a(n)^2)))...) is an integer.
Cf. A099874, Decimal expansion of a nested radical: cubeRoot(1 + cubeRoot(2 + cubeRoot(3 + cubeRoot(4 + ...
Cf. A099876, Decimal expansion of a nested radical: sqrt(1! + sqrt(2! + sqrt(3! + ...
Cf. A099877, Decimal expansion of a nested radical: sqrt(1^2 + cubeRoot(2^3 + 4thRoot(3^4 + 5thRoot(4^5 + ...
Cf. A099878, Decimal expansion of a nested radical: sqrt(1 + cubeRoot(2 + 4thRoot(3 + 5thRoot(4 + ...
Cf. A099879, Decimal expansion of a nested radical: sqrt(1^2 + sqrt(2^2 + sqrt(3^2 + ...
(End)

Programs

  • Mathematica
    fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; t = Select[ Range[ 300], fQ[ # ] &]; f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + t[[k]]]; k-- ]; s]; ContinuedFraction[ f[90], 99] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

continued fraction representation of: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n)=A001358(n))))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A105818 Continued fraction expansion of the Fibonacci nested radical (A105817).

Original entry on oeis.org

1, 1, 1, 1, 23, 18, 1, 1, 1, 1, 1, 1, 2, 1, 22, 2, 1, 53, 1, 1, 10, 1, 1, 17, 2, 4, 1, 27, 1, 2, 422, 3, 3, 13, 12, 5, 28, 1, 3, 1, 2, 1, 3, 2, 4, 6, 6, 3, 5, 50, 1, 1, 6, 3, 2, 1, 118, 2, 1, 1, 2, 6, 1, 4, 1, 1, 5, 2, 3, 3, 16, 1, 4, 6, 2, 2, 22, 4, 3, 10, 1, 1, 49, 5, 1, 1, 12, 1, 1, 3, 13, 3, 10, 1, 2
Offset: 0

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The decimal expansion of this is A105817. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.66198246232781155796760608181513129505616756246503500829906806743...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + Fibonacci[k]]; k-- ]; s]; ContinuedFraction[ f[46], 95] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

Sqrt(1 + Sqrt(1 + Sqrt(2 + Sqrt(3 + Sqrt(5 + ... + Sqrt(Fibonacci(n) = A000045)))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A352495 Decimal expansion of the pearl of the Riemann zeta function.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 7, 8, 5, 7, 6, 3, 3, 0, 6, 6, 4, 4, 0, 7, 3, 0, 2, 1, 5, 0, 9, 1, 8, 5, 7, 3, 6, 2, 1, 7, 7, 8, 2, 9, 7, 1, 0, 0, 9, 1, 4, 0, 5, 3, 3, 3, 0, 4, 7, 8, 7, 9, 7, 3, 1, 9, 2, 8, 4, 5, 8, 6, 4, 7, 3, 5, 4, 1, 6, 6, 6, 1, 2, 9, 3, 5, 2, 6, 5, 0, 0
Offset: 1

Views

Author

Eduard Roure Perdices, Mar 18 2022

Keywords

Comments

Let Z be the Riemann zeta function, and consider its sequence of nontrivial zeros with nonnegative imaginary part, {r(m)}, so that for every m >= 1, Z(r(m)) = 0, 0 <= Re(r(m)) <= 1, and 0 <= Im(r(m)), and for every k > m, Im(r(m)) < Im(r(k)), or Im(r(m)) = Im(r(k)) and Re(r(m)) < Re(r(k)).
Let i be the imaginary unit, and define the sequence {b(m)} as follows: b(1) = Z((r(1)-1/2)/i), b(2) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i)), b(3) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i + Z((r(3)-1/2)/i))), and so on. If this sequence converges, we call its limit the pearl of Z.
Suppose that the Riemann Hypothesis is true. Then the sequence {b(m)} is real. On the interval [2,oo), Z is decreasing, positive, and bounded above by 2, so {b(2*m-1)} is decreasing and bounded below by 0, and hence, it converges to a real value, say A. Moreover, {b(2*m)} is increasing and b(2*m) <= b(2*m+1), and by repeated application of the mean value theorem, b(2*m+1) - b(2*m) <= Z(Im(r(2*m+1))) * |Z'(Im(r(1)))|^(2*m) <= 2*(4/100000)^(2*m), so {b(2*m)} also converges to A, and {a(n)} is the decimal expansion of this value.
We don't know if the existence of a real pearl of Z implies the Riemann Hypothesis.
More generally, the definition of pearl works for Dirichlet L-functions, giving rise to analogous constants, not necessarily real.

Examples

			1.00002785763306644073021509185736217782971009140533304787973192845864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Re[res = Fold[Zeta[#1 + #2] &, 0, Reverse[(ZetaZero[Range[10]] - 1/2)/I]]], 10, 100][[1]]
Showing 1-6 of 6 results.