A099970
Write 1/e as a binary fraction; read this from left to right and whenever a 1 appears, note the integer formed by reading leftwards from that 1. Then convert those integers from binary into decimal numbers.
Original entry on oeis.org
1, 5, 13, 29, 61, 573, 2621, 6717, 23101, 88637, 350781, 875069, 9263677, 26040893, 93149757, 227367485, 2374851133, 10964785725, 28144654909, 165583608381, 440461515325, 990217329213, 3189240584765, 7587287095869, 16383380118077
Offset: 0
1/e = 0.367879441171442321595523770161460867445811131031767834507... = 0.010111100010110101011000110110001011001110111100110111110001101010111010110111 in binary.
-
d = 100; l = First[RealDigits[N[1/E, d], 2]]; Do[m = Take[l, n]; k = Length[m]; If[m[[k]] == 1, Print[FromDigits[Reverse[m], 2]]], {n, 1, d}] (* Ryan Propper, Aug 18 2005 *)
Module[{nn=50,e},e=RealDigits[1/E,2, 50][[1]];Table[If[e[[n]]== 0, Nothing,FromDigits[ Reverse[Take[e,n]],2]],{n,nn}]] (* Harvey P. Dale, Sep 17 2020 *)
A099969
Write 1/e as a binary fraction; read this from left to right and whenever a 1 appears, note the integer formed by reading leftwards from that 1.
Original entry on oeis.org
2, 10, 26, 58, 122, 1146, 5242, 13434, 46202, 177274, 701562, 1750138, 18527354, 52081786, 186299514, 454734970, 4749702266, 21929571450, 56289309818, 331167216762, 880923030650, 1980434658426, 6378481169530, 15174574191738
Offset: 0
1/e = 0.367879441171442321595523770161460867445811131031767834507... = 0.010111100010110101011000110110001011001110111100110111110001101010111010110111 in binary.
From the binary expansion we get 10 = 2, 1010 = 10, 11010 = 26, 111010 = 58, 1111010 = 122, etc.
-
d = 100; l = First[RealDigits[N[1/E, d], 2]]; Do[m = Take[l, n]; k = Length[m]; If[m[[k]] == 1, Print[2*FromDigits[Reverse[m], 2]]], {n, 1, d}] (* Ryan Propper, Aug 18 2005 *)
A099971
Write (sqrt(5)-1)/2 as a binary fraction; read this from left to right and whenever a 1 appears, note the integer formed by reading leftwards from that 1.
Original entry on oeis.org
1, 9, 25, 57, 121, 1145, 3193, 11385, 27769, 60537, 191609, 453753, 978041, 2026617, 10415225, 27192441, 94301305, 228519033, 496954489, 2644438137, 11234372729, 28414241913, 62773980281, 131493457017, 268932410489, 543810317433
Offset: 0
(sqrt(5)-1)/2 = 0.618033988749894848204586834365638117720309179805762862135... = 0.100111100011011101111001101110010111111101001010011111000001010111110011... in binary.
-
d = 100; l = First[RealDigits[N[(Sqrt[5]-1)/2, d], 2]]; Do[m = Take[l, n]; k = Length[m]; If[m[[k]] == 1, Print[FromDigits[Reverse[m], 2]]], {n, 1, d}] (* Ryan Propper, Aug 18 2005 *)
A099974
Write log(2) as a binary fraction; read this from left to right and whenever a 1 appears, note the integer formed by reading leftwards from that 1.
Original entry on oeis.org
1, 5, 13, 141, 653, 1677, 3725, 20109, 544397, 2641549, 6835853, 15224461, 32001677, 65556109, 132664973, 266882701, 803753613, 1877495437, 4024979085, 8319946381, 16909880973, 51269619341, 601025433229, 1700537061005
Offset: 0
log(2) = 0.69314718055994530941723212145817656807550013436025525412... = 0.1011000101110010000101111111011111010001110011110111100110101011110010011110... in binary.
-
d = 100; l = First[RealDigits[N[Log[2], d], 2]]; Do[m = Take[l, n]; k = Length[m]; If[m[[k]] == 1, Print[FromDigits[Reverse[m], 2]]], {n, 1, d}] (* Ryan Propper, Aug 17 2005 *)
Module[{nn=50,l2},l2=RealDigits[Log[2],2,nn][[1]];Table[FromDigits[ Reverse[ Take[ l2,n]],2],{n,nn}]]//Union (* Harvey P. Dale, Mar 29 2016 *)
A099973
Write Euler's constant gamma as a binary fraction; read this from left to right and whenever a 1 appears, note the integer formed by reading leftwards from that 1.
Original entry on oeis.org
1, 9, 73, 201, 457, 969, 9161, 140233, 402377, 2499529, 6693833, 15082441, 31859657, 65414089, 132522953, 1206264777, 3353748425, 11943683017, 29123552201, 63483290569, 132202767305, 269641720777, 819397534665
Offset: 0
gamma = 0.577215664901532860606512090082402431042159335939923598805... = 0.1001001111000100011001111110001101111101101100001100011110100100110100011011... in binary.
-
d = 100; l = First[RealDigits[N[EulerGamma, d], 2]]; Do[m = Take[l, n]; k = Length[m]; If[m[[k]] == 1, Print[FromDigits[Reverse[m], 2]]], {n, 1, d}] (* Ryan Propper, Aug 18 2005 *)
A113824
a(1)=1; a(n+1) = the least prime greater than 2*a(n) which is a(n) plus a power of two.
Original entry on oeis.org
1, 3, 7, 23, 151, 65687, 9007199254806679, 73795983494093013143, 205688069665150755269371147819668813122842057000180977011589271
Offset: 1
151 is there because 23 + 2^7 = 151 is prime.
A113860
Start with the binary representation of the Catalan constant (A104338, A006752) = 0.91596559... = sum_{i=1..infinity} b(i)/2^i, where b(i)=1,1,1,0,1,0,1,0,0,1,1,1,1.... Then a(n-1)=sum_{i=1..k: sum_{ j = 1..k} b(j)=n} b(i) * 2^(i-1). In words: scan the binary digits of the number, halt at each nonzero binary digit, add a power of 2 corresponding to the place of this digit after the comma, assign current partial sum to a(n), increment n.
Original entry on oeis.org
1, 3, 7, 23, 87, 599, 1623, 3671, 7767, 15959, 81495, 343639, 867927, 1916503, 18693719, 152911447, 421346903, 958217815, 2031959639, 4179443287, 12769377879, 1112281005655, 9908374027863, 27500560072279, 97869304249943
Offset: 0
A113914
(1,2,3) Jasinski-like positive power sequence.
Original entry on oeis.org
1, 5, 13, 29, 61, 131, 271, 569, 1381, 2789, 5581, 11171, 22369, 44741, 89491, 185543, 373273, 766229, 1532701, 3065411, 6130849, 12261701, 24700549, 49401101, 98802211, 202387391, 409557751, 819116231, 1638232471, 3276464969
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 3^1 = 5.
a(3) = 2*5 + 3^1 = 13.
a(4) = 2*13 + 3^1 = 29.
a(5) = 2*29 + 3^1 = 61.
a(6) = 2*61 + 3^2 = 271.
a(7) = 2*271 + 3^2 = 569.
a(32) = 2*6553461379 + 3^49 = 239299329230630636512841. Here 49 is a record value for the exponent.
A113927
a(1)=1, and recursively a(n+1) is the smallest prime p of the form p = 2*a(n) + 5^k for some k>0.
Original entry on oeis.org
1, 7, 19, 43, 211, 547, 4219, 8443, 17011, 34147, 71419, 142963, 1220989051, 3662681227, 19080811690579, 38161623381163, 76324467465451, 152648936884027, 305299094471179, 4656613483675581520483
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 5^1 = 7.
a(3) = 2*7 + 5^1 = 19.
a(4) = 2*19 + 5^1 = 43.
a(5) = 2*43 + 5^3 = 211.
a(6) = 2*211 + 5^3 = 547.
a(7) = 2*547 + 5^5 = 4219.
a(13) = 2*142963 + 5^13 = 1220989051.
a(20) = 2*305299094471179 + 5^31 = 4656613483675581520483, where 31 is a record exponent.
a(22) = 2*9313226967351163119091 + 5^45 = 28421709449030461369547296941307 and 45 is the new record exponent.
Original entry on oeis.org
2, 4, 9, 36, 6561, 252252704150178, 1650016588712720468
Offset: 1
a(6)-a(7) using Kim Walisch's primecount, from
Amiram Eldar, Mar 13 2020
Showing 1-10 of 10 results.
Comments