A100063 A Chebyshev transform of Jacobsthal numbers.
1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + x^4 + x^5 + 2*x^6 + x^7 + x^8 + 2*x^9 + ... - _Michael Somos_, Feb 20 2024
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Mathematica
PadRight[{1},120,{2,1,1}] (* or *) LinearRecurrence[{0,0,1},{1,1,1,2},120] (* Harvey P. Dale, Jul 08 2015 *) a[ n_] := If[n<1, Boole[n==0], {2, 1, 1}[[1+Mod[n, 3]]]]; (* Michael Somos, Feb 20 2024 *)
-
PARI
my(x='x+O('x^50)); Vec((1+x)(1+x^2)/(1-x^3)) \\ G. C. Greubel, May 03 2017
-
PARI
{a(n) = if(n<1, n==0, [2, 1, 1][n%3+1])}; /* Michael Somos, Feb 20 2024 */
-
PARI
contfrac(sqrt(5/2),,80) \\ Hugo Pfoertner, Jan 10 2025
Formula
G.f.: (1+x)(1+x^2)/(1-x^3).
a(n) = n*Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*A001045(n-2k+1)/(n-k).
Multiplicative with a(3^e) = 2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 11 2005
Dirichlet g.f.: zeta(s)*(1+1/3^s). Dirichlet convolution of A154272 and A000012. - R. J. Mathar, Feb 07 2011
a(n) = 2 if n == 0 (mod 3) and n > 0, and a(n) = 1 otherwise. - Amiram Eldar, Nov 01 2022
a(n) = gcd(Fibonacci(n), Lucas(n)) = gcd(A000045(n), A000032(n)), for n >= 1. - Amiram Eldar, Jul 10 2023
Comments