cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A380561 Rectangular array R read by descending antidiagonals: (row 1) = (R(1,k)) = (A006337(k)), k >= 1; (row n+1) = inverse runlength sequence of row n; and R(n,1) = (1, 1, 2, 1, 1, 2, 1, 1, 2, ...) = (A100063(n)) for n >= 1. See Comments.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2025

Keywords

Comments

For present purposes, all sequences to be considered consist entirely of 1s and 2s. If u and v are such sequences (infinite or finite), we call v an inverse runlength sequence of u if u is the runlength sequence of v. Each u has two inverse runlength sequences, one with first term 1 and the other with first term 2. Consequently, an inverse runlength array (in which each row after the first is an inverse runlength sequence of the preceding row) is determined by its first column. In this array, the first column is the periodic sequence with period 1,1,2. There are three limiting sequences: A378283, A378284, A378285. No two rows are identical.
See A380560 for a guide to related sequences.

Examples

			Corner:
    1  2  1  2  1  1  2  1  2  1  1  2  1  2  1  2  1  1  2
    1  2  2  1  2  2  1  2  1  1  2  1  1  2  1  2  2  1  2
    2  1  1  2  2  1  2  2  1  1  2  1  1  2  1  2  2  1  2
    1  1  2  1  2  2  1  1  2  1  1  2  2  1  2  1  1  2  1
    1  2  1  1  2  1  1  2  2  1  2  1  1  2  1  2  2  1  1
    2  1  1  2  1  2  2  1  2  1  1  2  2  1  2  2  1  2  1
    1  1  2  1  2  2  1  2  2  1  1  2  1  1  2  1  2  2  1
    1  2  1  1  2  1  1  2  2  1  2  2  1  1  2  1  2  2  1
    2  1  1  2  1  2  2  1  2  1  1  2  2  1  2  2  1  1  2
		

Crossrefs

Cf. A000002, A100063 (column 1), A006337, A380560.

Programs

  • Mathematica
    invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
        Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
    row1 = Flatten[Table[Nest[Flatten[# /. {1 -> {1, 2}, 2 -> {1, 1, 2}}] &, {1},  n], {n, 3}]];(* A006337 *)
    rows = {row1};
    col = PadRight[{}, 30, {1, 1, 2}];
    Do[AppendTo[rows, Take[invRE[Last[rows], col[[n]]], Length[row1]]], {n, 2, Length[col]}]
    rows // ColumnForm  (* array *)
    v[n_, k_] := rows[[n]][[k]];
    Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*sequence*)
    (* Peter J. C. Moses, Nov 20 2024 *)

A061347 Period 3: repeat [1, 1, -2].

Original entry on oeis.org

1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2
Offset: 1

Views

Author

Jason Earls, Jun 07 2001

Keywords

Comments

WARNING: It is unclear whether this sequence should start at offset 1 (as written) or offset 0 (in analogy to many similar sequences, which seems to be assumed in many of the given formulas).
Inverse binomial transform of A057079. - Paul Barry, May 15 2003
The unsigned version, with g.f. (1 + x + 2*x^2)/(1 - x^3), has a(n) = 4/3 -cos(2*Pi*n/3)/3 - sqrt(3)*sin(2*Pi*n/3)/3 = gcd(Fib(n+4), Fib(n+1)). - Paul Barry, Apr 02 2004
a(n) = L(n-2,-1), where L is defined as in A108299; see also A010892 for L(n,+1). - Reinhard Zumkeller, Jun 01 2005
From the Taylor expansion of log(1 + x + x^2) at x = 1, Sum_{k > 0} a(k)/k = log(3) = A002391. This is case n = 3 of the general expression Sum_{k > 0} (1-n*!(k mod n))/k = log(n). - Jaume Oliver Lafont, Oct 16 2009
If used with offset zero, a non-simple continued fraction representation of 2+sqrt(2). - R. J. Mathar, Mar 08 2012
Periodic sequences of this type can be also calculated by a(n) = c + floor(q/(p^m-1)*p^n) mod p, where c is a constant, q is the number representing the periodic digit pattern and m is the period length. c, p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D, min = minimum value of elements in D. Than c := min, p := max - min + 1 and q := p^m*Sum_{i=1..m} (D(i)-min)/p^i. Example: D = (1, 1, -2), c = -2, p = 4 and q = 60 for this sequence. - Hieronymus Fischer, Jan 04 2013
This is the Dirichlet inverse of A117997. - Petros Hadjicostas, Jul 25 2020

Examples

			G.f.: x + x^2 - 2*x^3 + x^4 + x^5 - 2*x^6 + x^7 + x^8 - 2*x^9 + ... - _Michael Somos_, Nov 27 2019
		

Crossrefs

Apart from signs, same as A057079 (also bin. Transf), A100063. Cf. A000045, A010892 for the rules a(n) = a(n - 1) + a(n - 2), a(n) = a(n - 1) - a(n - 2). a(n) = - a(n - 1) + a(n - 2) gives a signed version of Fibonacci numbers.
Alternating row sums of A130777: repeat(1,-2,1).

Programs

  • GAP
    Flat(List([1..50],n->[1,1,-2])); # Muniru A Asiru, Aug 02 2018
  • Magma
    &cat [[1, 1, -2]^^30]; // Wesley Ivan Hurt, Jul 01 2016
    
  • Maple
    seq(op([1, 1, -2]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016
  • Mathematica
    a[n_] := {1, 1, -2}[[Mod[n - 1, 3] + 1]]; Table[a[n], {n, 108}] (* Jean-François Alcover, Jul 19 2013 *)
    PadRight[{}, 90, {1, 1, -2}] (* After Harvey P. Dale, or *)
    CoefficientList[ Series[(2x + 1)/(x^2 + x + 1), {x, 0, 89}], x]  (* or *)
    LinearRecurrence[{-1, -1}, {1, 1}, 90] (* Robert G. Wilson v, Jul 30 2018 *)
  • PARI
    a(n)=1-3*!(n%3) \\ Jaume Oliver Lafont, Oct 16 2009
    
  • Sage
    def A061347():
        x, y = -1, -1
        while True:
            yield -x
            x, y = y, -x -y
    a = A061347(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013
    

Formula

With offset zero, a(n) = A057079(2n). a(n) = -a(n-1) - a(n-2) with a(0) = a(1) = 1.
From Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2003: (Start)
G.f.: x*(1 + 2*x)/(1 + x + x^2).
a(n) = (-1)^floor(2n/3) + ((-1)^floor((2n-1)/3) + (-1)^floor((2n+1)/3))/2. (End)
a(n) = -2*cos(2*Pi*n/3). - Jaume Oliver Lafont, May 06 2008
Dirichlet g.f.: zeta(s)*(1-1/3^(s-1)). - R. J. Mathar, Feb 09 2011
a(n) = n * Sum_{k=1..n} binomial(k,n-k)/k*(-1)^(k+1). - Dmitry Kruchinin, Jun 03 2011
a(n) = -2 + floor(110/333*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
a(n) = -2 + floor(20/21*4^(n+1)) mod 4. - Hieronymus Fischer, Jan 04 2013
a(n) = a(n-3) for n > 3. - Wesley Ivan Hurt, Jul 01 2016
E.g.f.: 2 - 2*cos(sqrt(3)*x/2)*exp(-x/2). - Ilya Gutkovskiy, Jul 01 2016
a(n) = (-1)^n*hypergeom([-n/2-1, -n/2-3/2], [-n-2], 4). - Peter Luschny, Dec 17 2016
a(n) = A000032(n) - A007040(n), for n > 1. - Wojciech Florek, Feb 20 2018

Extensions

Better definition from M. F. Hasler, Jan 13 2013

A099837 Expansion of (1 - x^2) / (1 + x + x^2) in powers of x.

Original entry on oeis.org

1, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1
Offset: 0

Views

Author

Paul Barry, Oct 27 2004

Keywords

Comments

A transform of (-1)^n.
Row sums of Riordan array ((1-x)/(1+x), x/(1+x)^2), A110162.
Let b(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)(-1)^(n-2k). Then a(n) = b(n) - b(n-2) = A049347(n) - A049347(n-2) (n > 0). The g.f. 1/(1+x) of (-1)^n is transformed to (1-x^2)/(1+x+x^2) under the mapping G(x)->((1-x^2)/(1+x^2))G(x/(1+x^2)). Partial sums of A099838.
A(n) = a(n+3) (or a(n) if a(0) is replaced by 2) appears, together with B(n) = A049347(n) in the formula 2*exp(2*Pi*n*i/3) = A(n) + B(n)*sqrt(3)*i, n >= 0, with i = sqrt(-1). See A164116 for the case N=5. - Wolfdieter Lang, Feb 27 2014

Examples

			G.f. = 1 - x - x^2 + 2*x^3 - x^4 - x^5 + 2*x^6 - x^7 - x^8 + 2*x^9 - x^10 + ...
		

Crossrefs

Programs

  • Maple
    A099837 := proc(n)
        option remember;
        if n <=2 then
            op(n+1,[1,-1,-1]) ;
        else
            -procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A099837(n),n=0..80) ; # R. J. Mathar, Apr 26 2022
  • Mathematica
    a[0] = 1; a[n_] := Mod[n+2, 3] - Mod[n, 3]; A099837 = Table[a[n], {n, 0, 71}](* Jean-François Alcover, Feb 15 2012, after Michael Somos *)
    LinearRecurrence[{-1, -1}, {1, -1, -1}, 50] (* G. C. Greubel, Aug 08 2017 *)
  • Maxima
    A099837(n) := block(
            if n = 0 then 1 else [2,-1,-1][1+mod(n,3)]
    )$ /* R. J. Mathar, Mar 19 2012 */
    
  • PARI
    {a(n) = [2, -1, -1][n%3 + 1] - (n == 0)}; /* Michael Somos, Jan 19 2012 */
    
  • PARI
    Vec((1-x^2)/(1+x+x^2) + O(x^20)) \\ Felix Fröhlich, Aug 08 2017

Formula

G.f.: (1-x^2)/(1+x+x^2).
Euler transform of length 3 sequence [-1, -1, 1]. - Michael Somos, Mar 21 2011
Moebius transform is length 3 sequence [-1, 0, 3]. - Michael Somos, Mar 22 2011
a(n) = -b(n) where b(n) = A061347(n) is multiplicative with b(3^e) = -2 if e > 0, b(p^e) = 1 otherwise. - Michael Somos, Jan 19 2012
a(n) = a(-n). a(n) = c_3(n) if n > 1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011
G.f.: (1 - x) * (1 - x^2) / (1 - x^3). a(n) = -a(n-1) - a(n-2) unless n = 0, 1, 2. - Michael Somos, Jan 19 2012
Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)*(3^(1-s)-1). - R. J. Mathar, Apr 11 2011
a(n+3) = R(n,-1) for n >= 0, with the monic Chebyshev T-polynomials R with coefficient table A127672. - Wolfdieter Lang, Feb 27 2014
For n > 0, a(n) = 2*cos(n*Pi/3)*cos(n*Pi). - Wesley Ivan Hurt, Sep 25 2017
From Peter Bala, Apr 20 2024: (Start)
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of 1/c(x)^(2*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. Cf. A333093.
Row sums of the Riordan array A110162. (End)

A132367 Period 6: repeat [1, 1, 2, -1, -1, -2].

Original entry on oeis.org

1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2
Offset: 0

Views

Author

Paul Curtz, Nov 09 2007

Keywords

Comments

Nonsimple continued fraction expansion of 1+1/sqrt(3) = 1 + A020760. - R. J. Mathar, Mar 08 2012

Crossrefs

Programs

Formula

a(n) = cos(Pi*n/3)/3+sqrt(3)*sin(Pi*n/3)+2*(-1)^n/3. - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 19 2016: (Start)
G.f.: (1+x+2*x^2)/(1+x^3).
a(n) + a(n-3) = 0 for n>2. (End)

A101825 G.f.: x*(1+x)^2/(1-x^3).

Original entry on oeis.org

0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2007

Keywords

Comments

Period 3. Used in A042965.
First differences are essentially A049347. The binomial transform yields 0, 1, 4, 10,... i.e. A111927 with the first two zeros removed. - R. J. Mathar, May 14 2008

Programs

  • Mathematica
    LinearRecurrence[{0,0,1},{0,1,2,1},120] (* Harvey P. Dale, Aug 01 2016 *)
  • PARI
    x='x+O('x^50); Vec(x*(1+x)^2/(1-x^3)) \\ G. C. Greubel, May 03 2017

Formula

a(n) = A100063(n+1), n>0. - R. J. Mathar, Sep 01 2008

A107751 a(n) = A107750(n+1) - A107750(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A107751[ nmax_ ] := Length /@ Split[ (Total[ 1 - IntegerDigits[ #1, 2 ] ] &) /@ Range[ 0, nmax ] ]; A107751[ 200 ] (* Peter Pein (petsie(AT)dordos.net), Oct 12 2007 *)
  • PARI
    up_to = 65537;
    A107751list(up_to) = { my(v=vector(up_to)); v[1]=v[2]=v[3]=v[4]=1; for(n=5,up_to,v[n] = (0^(v[n-1]-1) + 0^(v[n-2]-1))); (v); };
    v107751 = A107751list(up_to);
    A107751(n) = if(!n,1,v107751[n]); \\ Antti Karttunen, Dec 23 2018

Formula

a(n) = if n<=4 then 1 else 0^(a(n-1)-1) + 0^(a(n-2)-1).

A378708 Circumference of the n-Lucas cube graph.

Original entry on oeis.org

4, 10, 16, 28, 46, 74, 122, 198, 320
Offset: 4

Views

Author

Eric W. Weisstein, Dec 04 2024

Keywords

Comments

a(n) = 2*A245968(n) = A000032(n) - A100063 = LucasL[n] - 2/3 (Cos[2 n Pi/3] + 2) for known terms starting with n == 5.
Showing 1-7 of 7 results.