A100100 Triangle T(n,k) = binomial(2*n-k-1, n-k) read by rows.
1, 1, 1, 3, 2, 1, 10, 6, 3, 1, 35, 20, 10, 4, 1, 126, 70, 35, 15, 5, 1, 462, 252, 126, 56, 21, 6, 1, 1716, 924, 462, 210, 84, 28, 7, 1, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1, 24310, 12870, 6435, 3003, 1287, 495, 165, 45, 9, 1, 92378, 48620, 24310, 11440, 5005, 2002
Offset: 0
Examples
From _Paul Barry_, Mar 15 2010: (Start) Triangle begins in row n=0 with columns 0<=k<=n as: 1; 1, 1; 3, 2, 1; 10, 6, 3, 1; 35, 20, 10, 4, 1; 126, 70, 35, 15, 5, 1; 462, 252, 126, 56, 21, 6, 1; Production matrix begins 1, 1; 2, 1, 1; 3, 1, 1, 1; 4, 1, 1, 1, 1; 5, 1, 1, 1, 1, 1; 6, 1, 1, 1, 1, 1, 1; 7, 1, 1, 1, 1, 1, 1, 1; (End) A092392 as a square array = A100100 * square Pascal matrix: /1 1 1 1 ...\ / 1 \/1 1 1 1 ...\ |2 3 4 5 ...| | 1 1 ||1 2 3 4 ...| |6 10 15 21 ...| = | 3 2 1 ||1 3 6 10 ...| |20 35 56 84 ...| |10 6 3 1 ||1 4 10 20 ...| |70 ... | |35 ... ||1 ... | - _Peter Bala_, Nov 03 2015
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Peter Bala, Notes on logarithmic differentiation, the binomial transform and series reversion
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, An algebraic structure for Faber polynomials, Lin. Alg. Applic. 433 (2010) 1170-1179.
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974.
Crossrefs
Programs
-
Haskell
a100100 n k = a100100_tabl !! n !! n a100100_row n = a100100_tabl !! n a100100_tabl = [1] : f a092392_tabl where f (us : wss'@(vs : wss)) = (vs !! 1 : us) : f wss' -- Reinhard Zumkeller, Jan 15 2014
-
Magma
/* As triangle */ [[Binomial(2*n - k - 1, n - k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 21 2018
-
Maple
A100100 := proc(n,k) binomial(2*n-k-1,n-1) ; end proc: seq(seq(A100100(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
-
Mathematica
Flatten[Table[Binomial[2 n - k - 1, n - k], {n, 0, 11}, {k, 0, n}]] (* Vincenzo Librandi, Nov 21 2018 *)
-
PARI
T(n,k)=binomial(2*n-k-1,n-k) \\ Charles R Greathouse IV, Jan 16 2012
Formula
From Peter Bala, Sep 06 2015: (Start)
Essentially, the logarithmic derivative of A033184. (End)
Let column(k) = [T(n, k), n >= k], then the generating function for column(k) is (2/(sqrt(1-4*x)+1))^(k-1)/sqrt(1-4*x). - Peter Luschny, Mar 19 2021
O.g.f. row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k, i.e. o.g.f. of the triangle, G(z,x) = 1/((2 - c(z))*(1 - x*z*c(z))), with c the o.g.f. of A000108 (Catalan). See the Riordan coomment by Philippe Deléham above. - Wolfdieter Lang, Apr 06 2021
Comments