A100176 Structured octagonal prism numbers.
1, 16, 63, 160, 325, 576, 931, 1408, 2025, 2800, 3751, 4896, 6253, 7840, 9675, 11776, 14161, 16848, 19855, 23200, 26901, 30976, 35443, 40320, 45625, 51376, 57591, 64288, 71485, 79200, 87451, 96256, 105633, 115600, 126175, 137376, 149221, 161728, 174915, 188800
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[3*n^3-2*n^2: n in [1..50] ]; // Vincenzo Librandi, Aug 02 2011
-
Maple
[seq(3*n^3-2*n^2,n=1..47)]; # Zerinvary Lajos, Jun 29 2006
-
Mathematica
f[n_] := 3 n^3 - 2 n^2; Table[f[n], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 27 2010 *)
-
PARI
a(n)=3*n^3-2*n^2 \\ Charles R Greathouse IV, Aug 10 2017
Formula
a(n) = 3*n^3 - 2*n^2.
G.f.: x*(1+12*x+5*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(6*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/8 - Pi^2/12 + 9*log(3)/8 = 1.0936465529153418... . - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(1 + 7*x + 3*x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Extensions
More terms from Zerinvary Lajos, Jun 29 2006
Comments