cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216970 Primes congruent to 1 mod 37.

Original entry on oeis.org

149, 223, 593, 1259, 1481, 1777, 1999, 2221, 2591, 2887, 3109, 3257, 3331, 3701, 3923, 4219, 4441, 4663, 5107, 5477, 6143, 6217, 6661, 6883, 7253, 7549, 7919, 7993, 8363, 8807, 9029, 9103, 9473, 9547, 9769, 10139, 10657, 11027, 11471, 12211, 12433, 13099
Offset: 1

Views

Author

Bruno Berselli, Sep 21 2012

Keywords

Comments

Coincides for the first 38 terms with A059223 (primes p such that x^37 = 2 has no solution mod p), the first divergence is at the term 11471.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(14000) | IsOne(p mod 37)];
    
  • Mathematica
    Select[Prime[Range[1700]], Mod[#, 37] == 1 &]
    Select[Range[1, 14000, 37], PrimeQ]
  • PARI
    select(p->p%37==1,primes(10^4)) /* Joerg Arndt, Sep 21 2012 */

A100494 Primes of the form 47*k + 3.

Original entry on oeis.org

3, 97, 191, 379, 661, 1319, 1601, 1789, 2447, 2729, 2917, 3011, 4139, 4327, 4421, 4703, 5737, 6113, 6301, 6959, 7523, 7993, 8087, 8369, 8839, 8933, 9403, 9497, 9967, 10061, 10343, 10531, 11471, 11941, 13163, 13633, 14009, 14197, 14479, 15137
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 11 2005

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is 47*n+3 ]; // Vincenzo Librandi, Jul 18 2012
    
  • Mathematica
    Select[47 Range[0,500]+3, PrimeQ] (* Harvey P. Dale, Feb 26 2011 *)
  • SageMath
    [47*n+3 for n in (0..500) if is_prime(47*n+3)] # G. C. Greubel, Apr 03 2023
Showing 1-2 of 2 results.