cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100213 Expansion of g.f.: x*(4-7*x+2*x^2-8*x^4+16*x^5-16*x^6)/((1-2*x) * (1-2*x^2) * (1-2*x+2*x^2) * (1+2*x^2)).

Original entry on oeis.org

4, 9, 14, 18, 32, 64, 128, 256, 544, 1104, 2144, 4128, 8192, 16384, 32768, 65536, 131584, 263424, 525824, 1049088, 2097152, 4194304, 8388608, 16777216, 33562624, 67129344, 134242304, 268443648, 536870912, 1073741824, 2147483648, 4294967296, 8590065664
Offset: 1

Views

Author

Creighton Dement, Nov 11 2004

Keywords

Comments

The sequence can be created applying the pos operator (which sums over the positive coefficients) to the n-th power of the Floretion element (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e).

Examples

			a(5) = 32 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^5 = - 2 'j - 2 'k - 2 j' - 2 k' + 6 'ii' + 10 'jj' + 10 'kk' + 6 e,
and the sum of all positive coefficients is 6+10+10+6 = 32.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x*(4-7*x+2*x^2-8*x^4+16*x^5-16*x^6)/((1-4*x+6*x^2-4*x^3)*(1-4*x^4)) )); // G. C. Greubel, Mar 29 2024
    
  • Mathematica
    Rest[CoefficientList[Series[x(4-7x+2x^2-8x^4+16x^5-16x^6)/((1-2x)(1-2x^2)(1-2x+2x^2)(1+2x^2)),{x,0,40}],x]] (* or *) LinearRecurrence[{4,-6,4,4,-16,24,-16},{4,9,14,18,32,64,128},40] (* Harvey P. Dale, Aug 23 2015 *)
  • Sage
    def A100213_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(4-7*x+2*x^2-8*x^4+16*x^5-16*x^6)/((1-4*x+6*x^2-4*x^3)*(1-4*x^4)) ).list()
    a=A100213_list(51); a[1:] # G. C. Greubel, Mar 29 2024

Formula

a(n) = A100215(n) - A100212(n).
a(n) = (-1)^n*A009116(n+3) + A100216 + A038503(n+1).
Equation above in Floretian Algebra operator speak: (pos) + (neg) = (ves) = (jes) + (les) + (tes)
a(n-1) = A000079(n+1) + (5*A077957(n) + 6*A077957(n-1))/4 + A009545(n)/2 + A009545(n+1) + A077966(n-1) - A077966(n)/4. - R. J. Mathar, May 07 2008
From G. C. Greubel, Mar 29 2024: (Start)
a(n) = (1/16)*( 2^(n+4) - 2*((1+5*i)*(1+i)^n + (1-5*i)*(1-i)^n) + (1 - (-1)^n)*2^((n+1)/2)*(5+i^(n+1)) + (1+(-1)^n)*2^(1+n/2)*(3-2*i^n) ).
a(2*n-1) = 2^(n-3)*( 2^(n+2) + 5 + (-1)^n - 6*cos(n*Pi/2) + 4*sin(n*Pi/2) ), for n >= 1.
a(2*n) = 2^(n-2)*( 2^(n+2) + 3 - 2*(-1)^n - cos(n*Pi/2) + 5*sin(n*Pi/2) ), n >= 1.
E.g.f.: -1 + exp(2*x) + (1/8)*(6*cosh(sqrt(2)*x) + 5*sqrt(2)* sinh(sqrt(2)*x) - (4*cos(sqrt(2)*x) + sqrt(2)*sin(sqrt(2)*x)) - 2*exp(x)*(cos(x) - 5*sin(x)) ). (End)

Extensions

Replaced definition with generating function, changed offset to 1. - R. J. Mathar, Mar 12 2010

A100215 Expansion of (4 - 7*x + 2*x^2)/((1-2*x)*(1 - 2*x + 2*x^2)).

Original entry on oeis.org

4, 9, 14, 18, 24, 44, 104, 248, 544, 1104, 2144, 4128, 8064, 16064, 32384, 65408, 131584, 263424, 525824, 1049088, 2095104, 4189184, 8382464, 16775168, 33562624, 67129344, 134242304, 268443648, 536838144
Offset: 0

Views

Author

Creighton Dement, Nov 11 2004

Keywords

Comments

a(n) = (-1)^n*A009116(n+3) + A100216(n) + A038503(n+1), where A009116, A100216 and A038503 can be generated by the operators jes, les and tes of the Floretion algebra, which is a product factor space Q x Q /{(1,1), (-1,-1)}.
Binomial transform of the sequence 4,5,0,-1 (repeated with period length 4). - R. J. Mathar, Apr 18 2009

Examples

			a(2) = 14 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^3 = 1'j + 1'k + 1j' + 1k' + 3'ii' + 2'jj' + 2'kk' + 1'jk' + 1'kj' + 1e and the sum of these coefficients is 1 + 1 + 1 + 1 + 3 + 2 + 2 + 1 + 1 + 1 = 14 (see comment).
		

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3).
a(n) = (-1)^n*A009116(n+3) + A100216(n) + A038503(n+1).
a(n) = vesseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e), where ves sums over all floretion basis vector coefficients.
a(n) = 2^(n+1) + 2*A099087(n) + A099087(n-1). - R. J. Mathar, Apr 18 2009

Extensions

Definition replaced with the more precise g.f. by R. J. Mathar, Nov 17 2010
Showing 1-2 of 2 results.