A100215 Expansion of (4 - 7*x + 2*x^2)/((1-2*x)*(1 - 2*x + 2*x^2)).
4, 9, 14, 18, 24, 44, 104, 248, 544, 1104, 2144, 4128, 8064, 16064, 32384, 65408, 131584, 263424, 525824, 1049088, 2095104, 4189184, 8382464, 16775168, 33562624, 67129344, 134242304, 268443648, 536838144
Offset: 0
Examples
a(2) = 14 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^3 = 1'j + 1'k + 1j' + 1k' + 3'ii' + 2'jj' + 2'kk' + 1'jk' + 1'kj' + 1e and the sum of these coefficients is 1 + 1 + 1 + 1 + 3 + 2 + 2 + 1 + 1 + 1 = 14 (see comment).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Creighton Dement, Floretion Online Multiplier.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4).
Programs
-
Magma
I:=[4, 9, 14]; [n le 3 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jun 25 2012
-
Mathematica
LinearRecurrence[{4,-6,4},{4,9,14},40] (* Vincenzo Librandi, Jun 25 2012 *)
-
SageMath
A099087=BinaryRecurrenceSequence(2,-2,1,2) def A100215(n): return 2^(n+1) + 2*A099087(n) + A099087(n-1) [A100215(n) for n in range(41)] # G. C. Greubel, Mar 29 2024
Formula
Extensions
Definition replaced with the more precise g.f. by R. J. Mathar, Nov 17 2010
Comments