cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033506 Number of matchings in graph P_{3} X P_{n}.

Original entry on oeis.org

1, 3, 22, 131, 823, 5096, 31687, 196785, 1222550, 7594361, 47177097, 293066688, 1820552297, 11309395995, 70254767718, 436427542283, 2711118571311, 16841658983944, 104621568809247, 649916534985369, 4037327172325542
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 50, 999.
  • Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

Crossrefs

Column 3 of triangle A210662. Row sums of A100245.

Programs

  • GAP
    a:=[1,3,22,131,823,5096];; for n in [7..30] do a[n]:=4*a[n-1] +14*a[n-2]-10*a[n-4]+a[n-6]; od; a; # G. C. Greubel, Oct 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) )); // G. C. Greubel, Oct 26 2019
    
  • Maple
    seq(coeff(series((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5 )), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    CoefficientList[Series[(1-2x-x^2)(1+x-x^2)/((1+x)(1-5x-9x^2+9x^3+x^4-x^5) ), {x, 0, 30}], x] (* Harvey P. Dale, Dec 05 2014 *)
    LinearRecurrence[{4, 14, 0, -10, 0, 1}, {1, 3, 22, 131, 823, 5096}, 30] (* Harvey P. Dale, Dec 05 2014 *)
    Table[RootSum[-1 +# +9#^2 -9#^3 -5#^4 +#^5 &, 1436541#^n + 3941068#^(n+1) -6086452#^(n+2) -2800519#^(n+3) +591744#^(n+4) &]/10204570 -(-1)^n/5, {n, 20}] (* Eric W. Weisstein, Oct 02 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2 +9*x^3+x^4-x^5))) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    def A033506_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)) ).list()
    A033506_list(30) # G. C. Greubel, Oct 26 2019
    

Formula

G.f.: (1-2*x-x^2)*(1+x-x^2)/((1+x)*(1-5*x-9*x^2+9*x^3+x^4-x^5)). - Sergey Perepechko, Apr 19 2013

A272472 Triangle T(n,m) by rows: The number of tatami tilings of a 3 by n grid with dimers and m monomers.

Original entry on oeis.org

0, 2, 0, 1, 3, 0, 9, 0, 1, 0, 10, 0, 12, 4, 0, 27, 0, 13, 0, 18, 0, 56, 0, 16, 6, 0, 75, 0, 97, 0, 18, 0, 38, 0, 198, 0, 152, 0, 18, 10, 0, 177, 0, 433, 0, 214, 0, 18, 0, 72, 0, 570, 0, 836, 0, 282, 0, 18, 16, 0, 393, 0, 1517, 0, 1442, 0, 354, 0, 18, 0, 136
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Examples

			The triangle starts in row n=1 and column m=0 as:
0,2,0,1;
3,0,9,0,1;
0,10,0,12;
4,0,27,0,13;
0,18,0,56,0,16;
6,0,75,0,97,0,18;
0,38,0,198,0,152,0,18;
10,0,177,0,433,0,214,0,18;
0,72,0,570,0,836,0,282,0,18;
16,0,393,0,1517,0,1442,0,354,0,18;
0,136,0,1478,0,3472,0,2292,0,426,0,18;
26,0,829,0,4571,0,7052,0,3410,0,498,0,18;
0,250,0,3554,0,12070,0,13076,0,4808,0,570,0,18;
42,0,1691,0,12479,0,28158,0,22480,0,6494,0,642,0,18;
0,454,0,8108,0,37222,0,59530,0,36308,0,8468,0,714,0,18;
68,0,3359,0,31729,0,97766,0,115948,0,55672,0,10730,0,786,0,18;
0,814,0,17768,0,105238,0,231622,0,210880,0,81708,0,13280,0,858,0,18;
110,0,6537,0,76483,0,306606,0,503348,0,361878,0,115568,0,16118,0,930,0,18;
0,1446,0,37736,0,278626,0,803060,0,1016880,0,590846,0,158404,0,19244,0,1002,0,18;
178,0,12511,0,176833,0,889916,0,1923278,0,1929730,0,924216,0,211368,0,22658,0,1074,0,18;
0,2548,0,78144,0,700670,0,2549216,0,4268026,0,3469042,0,1392996,0,275612,0,26360,0,1146,0,18;
288,0,23617,0,395387,0,2430464,0,6661414,0,8867630,0,5948792,0,2032802,0,352288,0,30350,0,1218,0,18;
0,4460,0,158492,0,1690478,0,7547920,0,16089358,0,17395888,0,9787628,0,2883858,0,442548,0,34628,0,1290,0,18;
466,0,44067,0,860069,0,6319840,0,21344172,0,36292416,0,32446518,0,15527142,0,3990996,0,547544,0,39194,0,1362,0,18;
		

Crossrefs

Cf. A180970 (row sums), A068922 (column m=0), A271786 (column m=1), A272471 (2 by n grid), A100245 (row reversed without tatami condition).

Formula

G.f. x *(x^4*y^3 +7*x*y^2 +3*x +2*y +y^3 +x^6*y +3*x^2*y -x^3*y^2 -6*x^4*y -x^2*y^5 +x^2*y^3 +y^3*x^6 -2*y^4*x^5 -2*x^3 -2*x^5 +y^5*x^4 -x^3*y^4 -x^5*y^2 +x^7) / (x^6 +x^5*y -2*x^4*y^2 -2*x^2 -x*y +1). - R. J. Mathar, May 01 2016
Showing 1-2 of 2 results.