A100381 a(n) = 2^n*binomial(n,2).
0, 0, 4, 24, 96, 320, 960, 2688, 7168, 18432, 46080, 112640, 270336, 638976, 1490944, 3440640, 7864320, 17825792, 40108032, 89653248, 199229440, 440401920, 968884224, 2122317824, 4630511616, 10066329600, 21810380800, 47110422528
Offset: 0
References
- Jolley, Summation of Series, Dover (1961), eq (214) page 40.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- The Ramanujan Machine, Using algorithms to discover new mathematics.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Maple
seq(2^n*binomial(n,2),n=0..20);
-
Mathematica
Range[0,20]! CoefficientList[Series[2x^2 Exp[2x],{x,0,20}],x] Table[2^n Binomial[n,2],{n,0,30}] (* or *) LinearRecurrence[{6,-12,8},{0,0,4},30] (* Harvey P. Dale, Aug 15 2020 *)
-
PARI
a(n)=binomial(n,2)<
Charles R Greathouse IV, Oct 16 2015
Formula
Sum_{n>=2} 1/a(n) = 1 - log(2) = 0.3068528.... - Graeme McRae, Jul 28 2006
a(n) = Sum_{k=0..n} k*2^k = 2*A001815(n). - Zerinvary Lajos, Oct 09 2006
E.g.f.: 2*x^2*exp(2x).
a(n) = 4*A001788(n-1). - Johannes W. Meijer, Jun 27 2009
Sum_{j=1..k} (j+2)/a(j+1) = 1 - 1/((k+1)*2^k). [Jolley]
G.f.: -4*x^2 / (2*x-1)^3. - R. J. Mathar, Oct 05 2011
Sum_{n>=2} (-1)^n/a(n) = 3*log(3/2) - 1. - Amiram Eldar, Jul 20 2020
From Peter Bala Mar 04 2024: (Start)
Sum_{k = 2..n+2} 1/a(k) = 1/(4 - 4/(7 - 12/(10 - ... - 2*n*(n + 1)/(3*n + 4)))).
Sum_{k = 2..n+2} (-1)^k/a(k) = 1/(4 + 4/(5 + 12/(6 + ... + 2*n*(n + 1)/(n + 4)))).
Letting n -> oo in the above gives the continued fraction representations
1 - log(2) = Sum_{k >= 2} 1/a(k) = 1/(4 - 4/(7 - 12/(10 - ... - 2*n*(n + 1)/((3*n + 4) - ... )))) (an equivalent continued fraction for 1 - log(2) was conjectured by the Ramanujan machine) and
3*log(3/2) - 1 = Sum_{k >= 2} (-1)^k/a(k) = 1/(4 + 4/(5 + 12/(6 + ... + 2*n*(n + 1)/((n + 4) + ... )))). (End)
Comments