A196514 Partial sums of A100381.
0, 4, 28, 124, 444, 1404, 4092, 11260, 29692, 75772, 188412, 458748, 1097724, 2588668, 6029308, 13893628, 31719420, 71827452, 161480700, 360710140, 801112060, 1769996284, 3892314108, 8522825724, 18589155324, 40399536124, 87509958652
Offset: 0
References
- Jolley, Summation of Series, Dover (1961), eq (53) page 10.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (7,-18,20,-8).
Programs
-
Magma
[(n^2-n+2)*2^(n+1)-4 : n in [0..30]]; // Vincenzo Librandi, Oct 05 2011
-
Mathematica
Table[2^n*Binomial[n, 2], {n, 1, 27}] // Accumulate (* Jean-François Alcover, Jun 24 2013 *) LinearRecurrence[{7,-18,20,-8},{0,4,28,124},30] (* Harvey P. Dale, Jan 12 2016 *)
-
PARI
a(n)=(n^2-n+2)<<(n+1)-4 \\ Charles R Greathouse IV, Oct 05 2011
Formula
G.f.: 4*x / ( (x-1)*(2*x-1)^3 ).
a(n) = (n^2 - n + 2)*2^(n+1) - 4 = 4*A055580(n-1).
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4); a(0)=0, a(1)=4, a(2)=28, a(3)=124. - Harvey P. Dale, Jan 12 2016
Comments