cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100454 a(n) = sum of n-th column in array in A100452.

Original entry on oeis.org

1, 7, 24, 58, 109, 188, 307, 444, 641, 885, 1149, 1493, 1936, 2358, 2975, 3645, 4267, 5102, 6057, 6941, 8124, 9395, 10458, 12140, 13561, 15336, 17110, 19204, 21124, 23596, 26219, 28587, 31254, 34593, 37252, 40545, 44524, 47451, 51724, 55853, 60068, 64152, 69801, 73657, 79372
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2004

Keywords

Crossrefs

Cf. A100452.

Programs

  • Magma
    function t(n, k) // t = A100452
      if k eq 1 then return n^2;
      else return (n-k+1)*Floor((t(n, k-1) -1)/(n-k+1));
      end if;
    end function;
    A100454:= func< n | (&+[t(n,n-k+1): k in [1..n]]) >;
    [A100454(n): n in [1..60]]; // G. C. Greubel, Apr 07 2023
    
  • Mathematica
    t[1, n_]:= n^2;  (* t = A100452 *)
    t[m_, n_]/; 1, ]=0;
    A100454[n_]:= A100454[n]= Sum[t[n-k+1,n], {k,n}];
    Table[A100454[n], {n, 60}] (* G. C. Greubel, Apr 07 2023 *)
  • SageMath
    def t(n, k): # t = A100452
        if (k==1): return n^2
        else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1))
    def A100454(n): return sum(t(n,n-k+1) for k in range(1,n+1))
    [A100454(n) for n in range(1,61)] # G. C. Greubel, Apr 07 2023

Extensions

Terms a(26) onward added by G. C. Greubel, Apr 07 2023

A100453 a(n) = smallest number to appear exactly n times in the array A100452.

Original entry on oeis.org

1, 49, 224, 720, 960
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2004

Keywords

A100461 Triangle read by rows, based on array described below.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 3, 4, 6, 8, 7, 8, 9, 12, 16, 25, 26, 27, 28, 30, 32, 49, 50, 51, 52, 55, 60, 64, 109, 110, 111, 112, 115, 120, 126, 128, 229, 230, 231, 232, 235, 240, 245, 248, 256, 481, 482, 483, 484, 485, 486, 490, 496, 504, 512, 1003, 1004, 1005, 1008, 1010, 1014, 1015, 1016, 1017, 1020, 1024
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2004

Keywords

Examples

			Array begins:
  1  2  4  8  16  32 ...
  *  1  2  6  12  30 ...
  *  *  1  4   9  28 ...
  *  *  *  3   8  27 ...
  *  *  *  *   7  26 ...
  *  *  *  *   *  25 ...
and triangle begins:
    1;
    1,   2;
    1,   2,   4;
    3,   4,   6,   8;
    7,   8,   9,  12,  16;
   25,  26,  27,  28,  30,  32;
   49,  50,  51,  52,  55,  60,  64;
  109, 110, 111, 112, 115, 120, 126, 128;
		

Crossrefs

Programs

  • Magma
    function t(n,k) // t = A100461
      if k eq 1 then return 2^(n-1);
      else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1));
      end if;
    end function;
    [t(n,n-k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 07 2023
    
  • Mathematica
    t[n_, k_]:= t[n, k]= If[k==1, 2^(n-1), (n-k+1)*Floor[(t[n, k-1] -1)/(n-k+1)]];
    Table[t[n, n-k+1], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 07 2023 *)
  • SageMath
    def t(n,k): # t = A100461
        if (k==1): return 2^(n-1)
        else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1))
    flatten([[t(n,n-k+1) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 07 2023

Formula

Form an array t(m,n) (n >= 1, 1 <= m <= n) by: t(1,n) = 2^(n-1) for all n; t(m+1,n) = (n-m)*floor( (t(m,n) - 1)/(n-m) ) for 1 <= m <= n-1.

A100451 a(n) = 0 for n <= 2; for n >= 3, a(n) = (n-2)*floor((n^2-2)/(n-2)).

Original entry on oeis.org

0, 0, 7, 14, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597, 2700
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2004

Keywords

Crossrefs

Third row of array in A100452.
Cf. A028347.

Programs

  • Magma
    [0, 0] cat [(n-2)*Floor((n^2-2)/(n-2)): n in [3..30]]; // Vincenzo Librandi, Oct 04 2011
    
  • Mathematica
    Join[{0,0,7,14},Table[(n-2)(n+2),{n,5,60}]] (* or *) Join[{0,0,7,14}, LinearRecurrence[{3,-3,1},{21,32,45},60]] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    a(n)=if(n<3,0,(n^2-2)\(n-2)*(n-2)) \\ Charles R Greathouse IV, Oct 16 2015
    
  • SageMath
    def A100451(n):
        return 7 * (n - 2) * ((n - 1) // 2) if n < 5 else (n - 2) * (n + 2)
    print([A100451(n) for n in range(1, 61)])  # G. C. Greubel, Apr 07 2023

Formula

a(n) = (n-2)*(n+2), n >= 5. - R. J. Mathar, Aug 17 2009
a(n) = A028347(n), n >= 5. - R. J. Mathar, Jul 31 2010

Extensions

Factor in definition corrected by R. J. Mathar, Aug 17 2009

A101224 Triangle, read by rows, where T(n,1) = n^2-n+1 for n>=1 and T(n,k) = (n-k+1)*floor( (T(n,k-1)-1)/(n-k+1) ) for 1A000960).

Original entry on oeis.org

1, 3, 2, 7, 6, 5, 13, 12, 10, 9, 21, 20, 18, 16, 15, 31, 30, 28, 27, 26, 25, 43, 42, 40, 36, 33, 32, 31, 57, 56, 54, 50, 48, 45, 44, 43, 73, 72, 70, 66, 65, 64, 63, 62, 61, 91, 90, 88, 84, 78, 75, 72, 69, 68, 67, 111, 110, 108, 104, 98, 96, 95, 92, 90, 88, 87, 133, 132, 130, 126
Offset: 1

Views

Author

Paul D. Hanna, Dec 01 2004

Keywords

Comments

A variant of triangle A100452. The main diagonal equals A100287, the first number that is crossed off at stage n in the Flavius sieve (A000960). Row sums are A101105.

Examples

			T(4,4) = 9 since we start with T(4,1)=4^2-4+1=13 and then
T(4,2)=(4-2+1)*floor((T(4,1)-1)/(4-2+1))=3*floor((13-1)/3)=12,
T(4,3)=(4-3+1)*floor((T(4,2)-1)/(4-3+1))=2*floor((12-1)/2)=10,
T(4,4)=(4-4+1)*floor((T(4,3)-1)/(4-4+1))=1*floor((10-1)/1)=9.
Rows begin:
[1],
[3,2],
[7,6,5],
[13,12,10,9],
[21,20,18,16,15],
[31,30,28,27,26,25],
[43,42,40,36,33,32,31],
[57,56,54,50,48,45,44,43],
[73,72,70,66,65,64,63,62,61],...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(k==1,n^2-n+1,(n-k+1)*floor((T(n,k-1)-1)/(n-k+1)))

Formula

T(n, n) = A100287(n).
Showing 1-5 of 5 results.