cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100504 a(n) = (4*n^3 + 6*n^2 + 8*n + 6)/3.

Original entry on oeis.org

2, 8, 26, 64, 130, 232, 378, 576, 834, 1160, 1562, 2048, 2626, 3304, 4090, 4992, 6018, 7176, 8474, 9920, 11522, 13288, 15226, 17344, 19650, 22152, 24858, 27776, 30914, 34280, 37882, 41728, 45826, 50184, 54810, 59712, 64898, 70376, 76154, 82240
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2004

Keywords

Comments

Bisection of A000125.
This sequence is related to A002061 by a(n) = (n+1)*A002061(n+1) + Sum_{i=0..n} A002061(i). - Bruno Berselli, Dec 19 2013

Crossrefs

Cf. A037237.

Programs

  • Magma
    I:=[2, 8, 26, 64]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 26 2012
    
  • Mathematica
    CoefficientList[Series[2*(1+3x^2)/((1-x)^4),{x,0,40}],x] (* Vincenzo Librandi, Jun 26 2012 *)
    LinearRecurrence[{4,-6,4,-1},{2,8,26,64},40] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    a(n)=n*(4*n^2+6*n+8)/3+2 \\ Charles R Greathouse IV, Jan 18 2012
    
  • SageMath
    [2 + 2*n*(2*n^2+3*n+4)/3 for n in range(41)] # G. C. Greubel, Apr 03 2023

Formula

a(n) = a(n-1) + (2*n)^2 + 2. - Philippe Deléham, Jan 18 2012
From Vincenzo Librandi, Jun 26 2012: (Start)
G.f.: 2*(1+3*x^2)/(1-x)^4;
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
From G. C. Greubel, Apr 03 2023: (Start)
a(n) = 2 + 2*A037237(n-1).
E.g.f.: (2/3)*(3 + 9*x + 9*x^2 + 2*x^3)*exp(x). (End)

Extensions

More terms from Hugo Pfoertner, Nov 25 2004
New name based on formula from Ralf Stephan