cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100545 Expansion of (7-2*x) / (1-3*x+x^2).

Original entry on oeis.org

7, 19, 50, 131, 343, 898, 2351, 6155, 16114, 42187, 110447, 289154, 757015, 1981891, 5188658, 13584083, 35563591, 93106690, 243756479, 638162747, 1670731762, 4374032539, 11451365855, 29980065026, 78488829223, 205486422643, 537970438706, 1408424893475, 3687304241719, 9653487831682, 25273159253327
Offset: 0

Views

Author

Creighton Dement, Dec 31 2004

Keywords

Comments

A Floretion integer sequence relating to Fibonacci numbers.
Inverse binomial transform of A013655; inversion of A097924.

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+4) +Lucas(1,-1,2*n+3)[2] ); # G. C. Greubel, Jan 17 2020
  • Magma
    [Fibonacci(2*n+4) +Lucas(2*n+3): n in [0..30]]; // G. C. Greubel, Jan 17 2020
    
  • Maple
    F := proc(n) combinat[fibonacci](n) ; end: A100545 := proc(n) 4*F(2*(n+1)) + F(2*n+1)+F(2*n+3) ; end: for n from 0 to 30 do printf("%d,",A100545(n)) ; od ; # R. J. Mathar, Oct 26 2006
  • Mathematica
    Table[Fibonacci[2*(n+2)] + LucasL[2*n+3], {n,0,30}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    Vec((7-2*x)/(1-3*x+x^2) + O(x^30)) \\ Michel Marcus, Feb 11 2015
    
  • Sage
    [fibonacci(2*n+4) +lucas_number2(2*n+3,1,-1) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n-1) = 4*Fibonacci(2*n) + Fibonacci(2*n-1) + Fibonacci(2*n+1).
a(n) + a(n+1) = A055849(n+2).
a(n) = 3*a(n-1) - a(n-2) with a(0)=7 and a(1)=19. - Philippe Deléham, Nov 16 2008
a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-17+7*sqrt(5)) + (3+sqrt(5))^n*(17+7*sqrt(5)))) / sqrt(5). - Colin Barker, Oct 14 2015
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = Fibonacci(2*n+4) + Lucas(2*n+3).
E.g.f.: 2*exp(3*t/2)*(cosh(sqrt(5)*t/2) + (4/sqrt(5))*sinh(sqrt(5)*t/2)). (End)

Extensions

Corrected and extended by T. D. Noe and R. J. Mathar, Oct 26 2006