cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054486 Expansion of (1+2*x)/(1-3*x+x^2).

Original entry on oeis.org

1, 5, 14, 37, 97, 254, 665, 1741, 4558, 11933, 31241, 81790, 214129, 560597, 1467662, 3842389, 10059505, 26336126, 68948873, 180510493, 472582606, 1237237325, 3239129369, 8480150782, 22201322977, 58123818149, 152170131470, 398386576261, 1042989597313
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

Comments

Binomial transform of A000285. - R. J. Mathar, Oct 26 2011

Examples

			G.f. = 1 + 5*x + 14*x^2 + 37*x^3 + 97*x^4 + 254*x^5 + 665*x^6 + 1741*x^7 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> F(2*n+2) +2*F(2*n) ); # G. C. Greubel, Nov 08 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+2*x)/(1-3*x+x^2)) ); // Marius A. Burtea, Nov 05 2019
    
  • Magma
    a:=[1,5]; [n le 2 select a[n] else 3*Self(n-1)-Self(n-2): n in [1..30]]; // Marius A. Burtea, Nov 05 2019
    
  • Maple
    with(combinat); f:=fibonacci; seq(f(2*n+2)+2*f(2*n), n=0..30); # G. C. Greubel, Nov 08 2019
  • Mathematica
    CoefficientList[Series[(2*z+1)/(z^2-3*z+1), {z, 0, 30}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *)
    a[ n_]:= 3 Fibonacci[2n] + Fibonacci[2n+1]; (* Michael Somos, Mar 17 2015 *)
    LinearRecurrence[{3,-1},{1,5},40] (* Harvey P. Dale, Apr 24 2019 *)
  • PARI
    Vec((1+2*x)/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    {a(n) = 3*fibonacci(2*n) + fibonacci(2*n+1)}; /* Michael Somos, Mar 17 2015 */
    
  • Sage
    f=fibonacci; [f(2*n+2) +2*f(2*n) for n in (0..30)] # G. C. Greubel, Nov 08 2019
    

Formula

a(n) = 3*a(n-1) - a(n-2), a(0)=1, a(1)=5.
a(n) = (5*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
a(n) + 7*A001519(n) = A005248(n). - Creighton Dement, Oct 30 2004
a(n) = Lucas(2*n+1) + Fibonacci(2*n) = A002878(n) + A001906(n) = A025169(n-1) + A001906(n+1).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-6)^k. - Philippe Deléham, Mar 05 2014
0 = -11 + a(n)^2 - 3*a(n)*a(n+1) + a(n+1)^2 for all n in Z. - Michael Somos, Mar 17 2015
a(n) = -2*F(n)^2 + 6*F(n)*F(n+1) + F(n+1)^2 for all n in Z where F = Fibonacci. - Michael Somos, Mar 17 2015
a(n) = 3*F(2*n) + F(2*n+1) for all n in Z where F = Fibonacci. - Michael Somos, Mar 17 2015
a(n) = -A100545(-2-n) for all n in Z. - Michael Somos, Mar 17 2015
a(n) = A000285(2*n) = A228208(2*n+1) = A104449(2*n+1) for all n in Z. - Michael Somos, Mar 17 2015
From Klaus Purath, Nov 05 2019: (Start)
a(n) = (a(n-m) + a(n+m))/Lucas(2*m), m <= n.
a(n) = sum of 2*m+1 consecutive terms starting with a(n-m) divided by Lucas(2*m+1), m <= n.
a(n) = alternating sum of 2*m+1 consecutive terms starting with a(n-m) divided by Fibonacci(2*m+1), m <= n.
a(n) + a(n+1) = sum of 2*m+2 consecutive terms starting with a(n-m) divided by Fibonacci(2*m+2), m <= n.
a(n) + a(n+1) = (a(n-m) + a(n+m+1))/Fibonacci(2*m+1), m <= n.
The following formulas are extended to negative indexes:
a(n) = 3*Fibonacci(2*n+1) - Fibonacci(2*n-3).
a(n) = (Fibonacci(2*n+5) - 3* Fibonacci(2*n-1))/2.
a(n) = (4*Lucas(2*n+2) - Lucas(2*n-4))/5.
a(n) = Fibonacci(2*n+5) - 4*Fibonacci(2*n+1).
a(n) = (5*Fibonacci(2*n+5) - Fibonacci(2*n-7))/12. (End)
E.g.f.: exp(-(1/2)*(-3+sqrt(5))*x)*(-7 + sqrt(5) + (7 + sqrt(5))*exp(sqrt(5)*x))/(2*sqrt(5)). - Stefano Spezia, Nov 19 2019
a(n) = 3*n + 1 + Sum_{k=1..n} k*a(n-k). - Yu Xiao, Jun 20 2020

Extensions

"a(1)=5", not "a(0)=5" from Dan Nielsen (nielsed(AT)uah.edu), Sep 10 2009

A244472 2nd-largest term in n-th row of Stern's diatomic triangle A002487.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099
Offset: 1

Views

Author

N. J. A. Sloane, Jul 01 2014

Keywords

Crossrefs

Cf. A002487, A013655, A100545 (bisection).

Programs

  • Magma
    I:=[1, 2, 4, 7, 12]; [n le 5 select I[n] else Self(n-1)+Self(n-2): n in [1..40]]; // Wesley Ivan Hurt, Jul 10 2015
  • Maple
    A244472 := proc(n)
        if n < 4 then
            op(n,[1,2,4]) ;
        else
            combinat[fibonacci](n+2)-combinat[fibonacci](n-3) ;
        end if;
    end proc:
    seq(A244472(n),n=1..50) ; # R. J. Mathar, Jul 05 2014
  • Mathematica
    CoefficientList[Series[-(x^4 + x^3 + x^2 + x + 1)/(x^2 + x - 1), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 10 2015 *)
    Join[{1, 2, 4}, LinearRecurrence[{1, 1}, {7, 12}, 50]] (* Vincenzo Librandi, Jul 11 2015 *)
  • PARI
    Vec(-x*(x^4+x^3+x^2+x+1)/(x^2+x-1) + O(x^100)) \\ Colin Barker, Jul 10 2015
    

Formula

a(n) = A013655(n-1), n>3.
a(n) = a(n-1)+a(n-2), n>5. - Colin Barker, Jul 10 2015
G.f.: -x*(x^4+x^3+x^2+x+1) / (x^2+x-1). - Colin Barker, Jul 10 2015

A271357 a(n) = k*Fibonacci(2*n+1) + (k+1)*Fibonacci(2*n), where k=3.

Original entry on oeis.org

3, 10, 27, 71, 186, 487, 1275, 3338, 8739, 22879, 59898, 156815, 410547, 1074826, 2813931, 7366967, 19286970, 50493943, 132194859, 346090634, 906077043, 2372140495, 6210344442, 16258892831, 42566334051, 111440109322, 291753993915, 763821872423, 1999711623354
Offset: 0

Views

Author

Colin Barker, Apr 05 2016

Keywords

Crossrefs

Cf. A000045.
Cf. A001906 (k=0), A002878 (k=1), A100545 (k=2, without the initial 2), this sequence (k=3), A271358 (k=4), A271359 (k=5).

Programs

  • Magma
    k:=3; [k*Fibonacci(2*n+1)+(k+1)*Fibonacci(2*n): n in [0..30]]; // Bruno Berselli, Apr 06 2016
  • Mathematica
    Table[3Fibonacci[2n+1]+4Fibonacci[2n],{n,0,30}] (* or *) LinearRecurrence[ {3,-1},{3,10},30] (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    a(n) = 3*fibonacci(2*n+1) + 4*fibonacci(2*n)
    
  • PARI
    Vec((3+x)/(1-3*x+x^2) + O(x^50))
    

Formula

G.f.: (3+x) / (1-3*x+x^2).
a(n) = 3*a(n-1)-a(n-2) for n>1.
a(n) = (2^(-2-n)*((9-sqrt(5))*(3+sqrt(5))^(n+1) - (9+sqrt(5))*(3-sqrt(5))^(n+1))) / sqrt(5).
a(n) = 4*Fibonacci(2*n+2) - Fibonacci(2*n+1).

Extensions

Changed offset and adapted definition, programs and formulas by Bruno Berselli, Apr 06 2016

A271358 a(n) = k*Fibonacci(2*n+1) + (k+1)*Fibonacci(2*n), where k=4.

Original entry on oeis.org

4, 13, 35, 92, 241, 631, 1652, 4325, 11323, 29644, 77609, 203183, 531940, 1392637, 3645971, 9545276, 24989857, 65424295, 171283028, 448424789, 1173991339, 3073549228, 8046656345, 21066419807, 55152603076, 144391389421, 378021565187, 989673306140
Offset: 0

Views

Author

Colin Barker, Apr 05 2016

Keywords

Crossrefs

Cf. A000045.
Cf. A001906 (k=0), A002878 (k=1), A100545 (k=2, without the initial 2), A271357 (k=3), this sequence (k=4), A271359 (k=5).

Programs

  • Magma
    k:=4; [k*Fibonacci(2*n+1)+(k+1)*Fibonacci(2*n): n in [0..30]]; // Bruno Berselli, Apr 06 2016
  • PARI
    a(n) = 4*fibonacci(2*n+1) + 5*fibonacci(2*n)
    
  • PARI
    Vec((4+x)/(1-3*x+x^2) + O(x^50))
    

Formula

G.f.: (4+x) / (1-3*x+x^2).
a(n) = 3*a(n-1)-a(n-2) for n>1.
a(n) = (2^(-2-n)*((11-sqrt(5))*(3+sqrt(5))^(n+1) - (11+sqrt(5))*(3-sqrt(5))^(n+1))) / sqrt(5).
a(n) = 5*Fibonacci(2*n+2) - Fibonacci(2*n+1).
a(n) = 4*A001906(n+1) + A001906(n-1).

Extensions

Changed offset and adapted definition, programs and formulas by Bruno Berselli, Apr 06 2016

A271359 a(n) = k*Fibonacci(2*n+1) + (k+1)*Fibonacci(2*n), where k=5.

Original entry on oeis.org

5, 16, 43, 113, 296, 775, 2029, 5312, 13907, 36409, 95320, 249551, 653333, 1710448, 4478011, 11723585, 30692744, 80354647, 210371197, 550758944, 1441905635, 3774957961, 9882968248, 25873946783, 67738872101, 177342669520, 464289136459, 1215524739857
Offset: 0

Views

Author

Colin Barker, Apr 05 2016

Keywords

Crossrefs

Cf. A000045.
Cf. A001906 (k=0), A002878 (k=1), A100545 (k=2, without the initial 2), A271357 (k=3), A271358 (k=4), this sequence (k=5).

Programs

  • Magma
    k:=5; [k*Fibonacci(2*n+1)+(k+1)*Fibonacci(2*n): n in [0..30]]; // Bruno Berselli, Apr 06 2016
  • PARI
    a(n) = 5*fibonacci(2*n+1) + 6*fibonacci(2*n)
    
  • PARI
    Vec((5+x)/(1-3*x+x^2) + O(x^50))
    

Formula

G.f.: (5+x) / (1-3*x+x^2).
a(n) = 3*a(n-1)-a(n-2) for n>1.
a(n) = (2^(-2-n)*((13-sqrt(5))*(3+sqrt(5))^(n+1) - (13+sqrt(5))*(3-sqrt(5))^(n+1))) / sqrt(5).
a(n) = 6*Fibonacci(2*n+2) - Fibonacci(2*n+1) = 5*A001906(n+1) +A001906(n).

Extensions

Changed offset and adapted definition, programs and formulas by Bruno Berselli, Apr 06 2016

A102714 Expansion of (x+2) / ((x+1)*(x^2-3*x+1)).

Original entry on oeis.org

2, 5, 14, 36, 95, 248, 650, 1701, 4454, 11660, 30527, 79920, 209234, 547781, 1434110, 3754548, 9829535, 25734056, 67372634, 176383845, 461778902, 1208952860, 3165079679, 8286286176, 21693778850, 56795050373, 148691372270, 389279066436, 1019145827039
Offset: 0

Views

Author

Creighton Dement, Feb 06 2005

Keywords

Comments

A floretion-generated sequence relating Fibonacci numbers.
Floretion Algebra Multiplication Program, FAMP code: (a(n)) = 2dia[I]forseq[ + .5'i + .5'ii' + .5'ij' + .5'ik' ], 2dia[J]forseq = 2dia[K]forseq = A001654, mixforseq = A001519, tesforseq = A099016, vesforseq = A000004. Identity used: dia[I] + dia[J] + dia[K] + mix + tes = ves

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x+2)/((x+1)(x^2-3x+1)),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-1},{2,5,14},30] (* Harvey P. Dale, Apr 22 2012 *)
  • PARI
    a(n) = round((2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((x+2)/((x+1)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Oct 01 2016

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), a(0) = 2, a(1) = 5, a(2) = 14.
a(n) + a(n+1) = A100545(n).
a(n) + 2*a(n+1) + a(n+2) = A055849(n+2).
a(n) + 2*A001654(n) - A099016(n+2) + 2*A001519(n) = 0.
a(n) = (2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = (-1)^n +9*A001906(n+1) -A001906(n) . - R. J. Mathar, Sep 11 2019

Extensions

Corrected by T. D. Noe, Nov 02 2006, Nov 07 2006
Showing 1-6 of 6 results.