A152187
a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=5.
Original entry on oeis.org
1, 5, 20, 85, 355, 1490, 6245, 26185, 109780, 460265, 1929695, 8090410, 33919705, 142211165, 596232020, 2499751885, 10480415755, 43940006690, 184222098845, 772366329985, 3238209484180, 13576460102465, 56920427728295
Offset: 0
A228208
y-values in the solution to x^2 - 20*y^2 = 176.
Original entry on oeis.org
1, 2, 5, 7, 14, 19, 37, 50, 97, 131, 254, 343, 665, 898, 1741, 2351, 4558, 6155, 11933, 16114, 31241, 42187, 81790, 110447, 214129, 289154, 560597, 757015, 1467662, 1981891, 3842389, 5188658, 10059505, 13584083, 26336126, 35563591, 68948873, 93106690
Offset: 1
-
I:=[1,2,5,7,14]; [n le 4 select I[n] else 3*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 17 2013
-
CoefficientList[Series[(x + 1) (x^2 + x + 1) / ((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
-
Vec(x*(x+1)*(x^2+x+1)/((x^2-x-1)*(x^2+x-1)) + O(x^100))
A054492
a(n) = 3*a(n-1) - a(n-2), a(0)=1, a(1)=6.
Original entry on oeis.org
1, 6, 17, 45, 118, 309, 809, 2118, 5545, 14517, 38006, 99501, 260497, 681990, 1785473, 4674429, 12237814, 32039013, 83879225, 219598662, 574916761, 1505151621, 3940538102, 10316462685, 27008849953, 70710087174, 185121411569, 484654147533, 1268841031030
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
-
I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
-
CoefficientList[Series[(1 + 3 x) / (1 - 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
LinearRecurrence[{3, -1}, {1, 6}, 100] (* G. C. Greubel, Mar 26 2016 *)
-
Vec((1+3*x)/(1-3*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
A055267
a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=7.
Original entry on oeis.org
1, 7, 20, 53, 139, 364, 953, 2495, 6532, 17101, 44771, 117212, 306865, 803383, 2103284, 5506469, 14416123, 37741900, 98809577, 258686831, 677250916, 1773065917, 4641946835, 12152774588, 31816376929, 83296356199, 218072691668, 570921718805, 1494692464747
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
-
List([0..30], n-> Fibonacci(2*n+2) +4*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
-
[5*Fibonacci(2*n) + Fibonacci(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
-
with(combinat); seq(fibonacci(2*n+2) +4*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
-
Table[5*Fibonacci[2n] + Fibonacci[2n+1], {n, 0, 30}]
Table[4*Fibonacci[2n-1] + 3*LucasL[2n-1], {n, 0, 30}] (* Rigoberto Florez, Dec 24 2018 *)
LinearRecurrence[{3,-1}, {1,7}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
nxt[{a_,b_}]:={b,3b-a}; NestList[nxt,{1,7},30][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)
-
Vec((1+4*x)/(1-3*x+x^2) + O(x^40)) \\ Michel Marcus, Sep 06 2017
-
[fibonacci(2*n+2) +4*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
A129905
Expansion of g.f.: (1-x)*(1+2*x)/((1+x)*(1-3*x+x^2)).
Original entry on oeis.org
1, 3, 6, 17, 43, 114, 297, 779, 2038, 5337, 13971, 36578, 95761, 250707, 656358, 1718369, 4498747, 11777874, 30834873, 80726747, 211345366, 553309353, 1448582691, 3792438722, 9928733473, 25993761699, 68052551622, 178163893169
Offset: 0
-
List([0..30], n -> (Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2); # G. C. Greubel, Jan 07 2019
-
[(Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2: n in [0..30]]; // G. C. Greubel, Jan 07 2019
-
CoefficientList[ Series[(1+x-2x^2)/(1-2x-2x^2+x^3), {x, 0, 27}], x] (* Or *)
t[1, k_] := Fibonacci@ k; t[2, k_] := LucasL@ k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 2, k]; Table[ t[n, n], {n, 28}] (* Robert G. Wilson v *)
-
vector(30, n, n--; (fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2) \\ G. C. Greubel, Jan 07 2019
-
[(fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2 for n in (0..30)] # G. C. Greubel, Jan 07 2019
A141751
Triangle, read by rows, where T(n,k) = [T(n-1,k-1)*T(n-1,k) + 1]/T(n-2,k-1) for 0=0 and T(n,0) = Fibonacci(2*n-1) for n>=1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 13, 13, 8, 4, 1, 34, 34, 21, 11, 5, 1, 89, 89, 55, 29, 14, 6, 1, 233, 233, 144, 76, 37, 17, 7, 1, 610, 610, 377, 199, 97, 45, 20, 8, 1, 1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1, 4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1
Offset: 0
Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
-
T(n,k)=if(n
-
T(n,k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
A109165
a(n) = 5*a(n-2) - 2*a(n-4), n >= 4.
Original entry on oeis.org
1, 2, 5, 10, 23, 46, 105, 210, 479, 958, 2185, 4370, 9967, 19934, 45465, 90930, 207391, 414782, 946025, 1892050, 4315343, 8630686, 19684665, 39369330, 89792639, 179585278, 409593865, 819187730, 1868384047, 3736768094, 8522732505
Offset: 0
A109164
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >= 3; a(0)=1, a(1)=6, a(2)=20.
Original entry on oeis.org
1, 6, 20, 57, 154, 408, 1073, 2814, 7372, 19305, 50546, 132336, 346465, 907062, 2374724, 6217113, 16276618, 42612744, 111561617, 292072110, 764654716, 2001892041, 5241021410, 13721172192, 35922495169, 94046313318, 246216444788
Offset: 0
-
Join[{a=1,b=6},Table[c=3*b-1*a+3;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2011 *)
LinearRecurrence[{4,-4,1},{1,6,20},30] (* Harvey P. Dale, Apr 14 2016 *)
Showing 1-8 of 8 results.
Comments