cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A152187 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 20, 85, 355, 1490, 6245, 26185, 109780, 460265, 1929695, 8090410, 33919705, 142211165, 596232020, 2499751885, 10480415755, 43940006690, 184222098845, 772366329985, 3238209484180, 13576460102465, 56920427728295
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2008

Keywords

Comments

Unsigned version of A152185.
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 and 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the corner squares to A015523 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. (1+2*x)/(1 - 3*x - k*x^2). Red king sequences that are members of this family are A007483 (k=2), A108981 (k=4), A152187 (k=5; this sequence), A154964 (k=6), A179602 (k=7) and A179598 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A036563 (k=-2), A054486 (k=-1), A084244 (k=0), A108300 (k=1) and A000351 (k=10).
Inverse binomial transform of A015449 (without the first leading 1).
(End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,5},{1,5},40] (* Harvey P. Dale, May 03 2013 *)

Formula

G.f.: (1+2*x)/(1 - 3*x - 5*x^2).
Lim_{k->infinity} a(n+k)/a(k) = (A072263(n) + A015523(n)*sqrt(29))/2. - Johannes W. Meijer, Aug 01 2010
G.f.: G(0)*(1+2*x)/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013

A228208 y-values in the solution to x^2 - 20*y^2 = 176.

Original entry on oeis.org

1, 2, 5, 7, 14, 19, 37, 50, 97, 131, 254, 343, 665, 898, 1741, 2351, 4558, 6155, 11933, 16114, 31241, 42187, 81790, 110447, 214129, 289154, 560597, 757015, 1467662, 1981891, 3842389, 5188658, 10059505, 13584083, 26336126, 35563591, 68948873, 93106690
Offset: 1

Views

Author

Colin Barker, Aug 16 2013

Keywords

Comments

Also y-values in the solution of x^2-5*y^2=44.

Crossrefs

Cf. A228207, A054486 (bisection).

Programs

  • Magma
    I:=[1,2,5,7,14]; [n le 4 select I[n] else 3*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 17 2013
  • Mathematica
    CoefficientList[Series[(x + 1) (x^2 + x + 1) / ((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
  • PARI
    Vec(x*(x+1)*(x^2+x+1)/((x^2-x-1)*(x^2+x-1)) + O(x^100))
    

Formula

G.f.: x*(x+1)*(x^2+x+1) / ((x^2-x-1)*(x^2+x-1)).
a(n) = 3*a(n-2)-a(n-4).
Let h(n) = hypergeom([(1 - n)/2, (n + 1) mod 2 - n/2], [1 - n], -4) then a(n) = h(n-1) + h(n) for n > 2. - Peter Luschny, Sep 03 2019

A054492 a(n) = 3*a(n-1) - a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 17, 45, 118, 309, 809, 2118, 5545, 14517, 38006, 99501, 260497, 681990, 1785473, 4674429, 12237814, 32039013, 83879225, 219598662, 574916761, 1505151621, 3940538102, 10316462685, 27008849953, 70710087174, 185121411569, 484654147533, 1268841031030
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    CoefficientList[Series[(1 + 3 x) / (1 - 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{3, -1}, {1, 6}, 100] (* G. C. Greubel, Mar 26 2016 *)
  • PARI
    Vec((1+3*x)/(1-3*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
    

Formula

a(n) = (6*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
a(n) = 2*Lucas(2*n+1) - Fibonacci(2*n+1).
G.f.: (1+3*x)/(1-3*x+x^2). - Philippe Deléham, Nov 03 2008
a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n-1). - Ehren Metcalfe, Mar 26 2016
E.g.f.: (1/10) * exp((3-sqrt(5))*x/2) * ((5-9*sqrt(5)) + (5+9*sqrt(5)) * exp(sqrt(5)*x) ). - G. C. Greubel, Mar 26 2016

Extensions

More terms from Vincenzo Librandi, Mar 20 2015
Typo in name fixed by Karl V. Keller, Jr., Jun 23 2015

A055267 a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 20, 53, 139, 364, 953, 2495, 6532, 17101, 44771, 117212, 306865, 803383, 2103284, 5506469, 14416123, 37741900, 98809577, 258686831, 677250916, 1773065917, 4641946835, 12152774588, 31816376929, 83296356199, 218072691668, 570921718805, 1494692464747
Offset: 0

Views

Author

Barry E. Williams, May 09 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) +4*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
  • Magma
    [5*Fibonacci(2*n) + Fibonacci(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
    
  • Maple
    with(combinat); seq(fibonacci(2*n+2) +4*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[5*Fibonacci[2n] + Fibonacci[2n+1],  {n, 0, 30}]
    Table[4*Fibonacci[2n-1] + 3*LucasL[2n-1], {n, 0, 30}] (* Rigoberto Florez, Dec 24 2018 *)
    LinearRecurrence[{3,-1}, {1,7}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
    nxt[{a_,b_}]:={b,3b-a}; NestList[nxt,{1,7},30][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    Vec((1+4*x)/(1-3*x+x^2) + O(x^40)) \\ Michel Marcus, Sep 06 2017
    
  • Sage
    [fibonacci(2*n+2) +4*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n) = (7*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).
G.f.: (1 + 4*x)/(1 - 3*x + x^2).
From Rigoberto Florez, Dec 24 2018: (Start)
a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n+1).
a(n) = 4*Fibonacci(2*n - 1) + 3*Lucas(2*n - 1). (End)
E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (11/sqrt(5))*sinh(sqrt(5)*t/2) ). - G. C. Greubel, Jan 17 2020
a(n) = 4*A001906(n) + A001906(n+1). - R. J. Mathar, Mar 06 2022

A129905 Expansion of g.f.: (1-x)*(1+2*x)/((1+x)*(1-3*x+x^2)).

Original entry on oeis.org

1, 3, 6, 17, 43, 114, 297, 779, 2038, 5337, 13971, 36578, 95761, 250707, 656358, 1718369, 4498747, 11777874, 30834873, 80726747, 211345366, 553309353, 1448582691, 3792438722, 9928733473, 25993761699, 68052551622, 178163893169
Offset: 0

Views

Author

Creighton Dement, Jun 04 2007

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B] with A = + .5'i + .5'j + .5'k + 'ji' + .5e ; B = + .5i' + .5j' + .5k' + 'ij' + .5e (apart from initial term)
From Andrew Rupinski, Jan 31 2011: (Start)
Form the infinite recursive array R(i,j) as follows: R(1,j) = F(j), R(2,j) = L(j) and for i > 2, R(i,j) = R(i-1,j) + R(i-2,j) where F(j) is the j-th Fibonacci number and L(j) is the j-th Lucas number. Then for i > 0, R(i,i) = a(i-1):
1 1 2 3 5 8 13 ...
1 3 4 7 11 18 29 ...
2 4 6 10 16 26 42 ...
3 7 10 17 27 44 71 ...
5 11 16 27 43 70 113 ...
8 18 26 44 70 114 184 ...
13 29 42 71 113 184 297 ...
...
(End)

Crossrefs

Programs

  • GAP
    List([0..30], n -> (Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2); # G. C. Greubel, Jan 07 2019
  • Magma
    [(Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2: n in [0..30]]; // G. C. Greubel, Jan 07 2019
    
  • Mathematica
    CoefficientList[ Series[(1+x-2x^2)/(1-2x-2x^2+x^3), {x, 0, 27}], x] (* Or *)
    t[1, k_] := Fibonacci@ k; t[2, k_] := LucasL@ k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 2, k]; Table[ t[n, n], {n, 28}] (* Robert G. Wilson v *)
  • PARI
    vector(30, n, n--; (fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2) \\ G. C. Greubel, Jan 07 2019
    
  • SageMath
    [(fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2 for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n+2) - a(n) = A054486(n+1).
a(n) = ( (4-sqrt(5))*((1+sqrt(5))/2)^(2*n) + (4 + sqrt(5))*((1-sqrt(5))/2 )^(2*n) + 2*(-1)^n)/5.
a(n) = -2*(-1)^n/5-8*A001906(n)/5+7*A001906(n+1)/5. - R. J. Mathar, Nov 10 2009
a(n) = (Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2. - Gary Detlefs Dec 20 2010

A141751 Triangle, read by rows, where T(n,k) = [T(n-1,k-1)*T(n-1,k) + 1]/T(n-2,k-1) for 0=0 and T(n,0) = Fibonacci(2*n-1) for n>=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 13, 13, 8, 4, 1, 34, 34, 21, 11, 5, 1, 89, 89, 55, 29, 14, 6, 1, 233, 233, 144, 76, 37, 17, 7, 1, 610, 610, 377, 199, 97, 45, 20, 8, 1, 1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1, 4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2008

Keywords

Examples

			Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = Fibonacci(2*(n-k)-1) + k*Fibonacci(2*(n-k)) for 0<=k<=n.

A109165 a(n) = 5*a(n-2) - 2*a(n-4), n >= 4.

Original entry on oeis.org

1, 2, 5, 10, 23, 46, 105, 210, 479, 958, 2185, 4370, 9967, 19934, 45465, 90930, 207391, 414782, 946025, 1892050, 4315343, 8630686, 19684665, 39369330, 89792639, 179585278, 409593865, 819187730, 1868384047, 3736768094, 8522732505
Offset: 0

Views

Author

Creighton Dement, Aug 18 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 4kbaseksigcycsumseq[ - .25'i - .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e], sumtype: (Y[15], *, vesy)

Crossrefs

Formula

a(2n) = A107839(n), a(2n+1) = A106709(n+1), a(n) - a(n-1) = A005824(n+2).
G.f.: (2*x+1)/(1-5*x^2+2*x^4).

A109164 a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >= 3; a(0)=1, a(1)=6, a(2)=20.

Original entry on oeis.org

1, 6, 20, 57, 154, 408, 1073, 2814, 7372, 19305, 50546, 132336, 346465, 907062, 2374724, 6217113, 16276618, 42612744, 111561617, 292072110, 764654716, 2001892041, 5241021410, 13721172192, 35922495169, 94046313318, 246216444788
Offset: 0

Views

Author

Creighton Dement, Aug 18 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 4tessumseq[ + .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e], sumtype: (Y[15], *, vesy)

Crossrefs

Cf. A054486.

Programs

Formula

a(n) - a(n-1) = A054486(n+1).
G.f.: (2*x+1)/((1-x)*(x^2-3*x+1)).
a(n) = A027941(n+1) +2*A027941(n). - R. J. Mathar, Sep 11 2019
Showing 1-8 of 8 results.