cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100616 Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives denominators of B(n)(2).

Original entry on oeis.org

1, 1, 6, 2, 10, 6, 42, 6, 30, 10, 22, 6, 2730, 210, 6, 2, 34, 30, 798, 42, 330, 110, 46, 6, 2730, 546, 6, 2, 290, 30, 14322, 462, 510, 170, 2, 6, 54834, 51870, 6, 2, 4510, 330, 1806, 42, 690, 46, 94, 6, 46410, 6630, 66, 22, 530, 30, 798, 798, 174, 290, 118, 6, 56786730
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2004

Keywords

Examples

			1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
		

References

  • F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

Crossrefs

Programs

  • Maple
    S:= series((x/(exp(x)-1))^2, x, 101):
    seq(denom(coeff(S,x,n)*n!), n=0..100); # Robert Israel, Jun 02 2015
  • Mathematica
    Table[Denominator@NorlundB[n, 2], {n, 0, 59}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    a(n) = denominator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020

Formula

E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006
a(n) = denominator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - Fabián Pereyra, Mar 02 2020