cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002176 a(n) = LCM of denominators of Cotesian numbers {C(n,k), 0 <= k <= n}.

Original entry on oeis.org

2, 6, 8, 90, 288, 840, 17280, 28350, 89600, 598752, 87091200, 63063000, 402361344000, 5003856000, 2066448384, 976924698750, 3766102179840000, 15209113920000, 5377993912811520000, 1646485441080480, 89903156428800000
Offset: 1

Views

Author

Keywords

Comments

See A100640 for definition of C(n,k).

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 886.
  • Louis Brand, Differential and Difference Equations, 1966, p. 612.
  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    Define C(n,k) as in A100640, then: A002176:=proc(n) local t1,k; t1:=1; for k from 0 to n do t1:=lcm(t1,denom(C(n,k))); od: t1; end;
  • Mathematica
    cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    A002176(n)= denominator(cn(n))

Extensions

More terms and references from Michael Somos

A100641 Triangle read by rows: denominators of Cotesian numbers C(n,k) (0 <= k <= k).

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 8, 8, 8, 8, 90, 45, 15, 45, 90, 288, 96, 144, 144, 96, 288, 840, 35, 280, 105, 280, 35, 840, 17280, 17280, 640, 17280, 17280, 640, 17280, 17280, 28350, 14175, 14175, 14175, 2835, 14175, 14175, 14175, 28350, 89600, 89600, 2240, 5600, 44800, 44800, 5600
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			Triangle A100640/A100641 begins:
[1],
[1/2, 1/2],
[1/6, 2/3, 1/6],
[1/8, 3/8, 3/8, 1/8],
[7/90, 16/45, 2/15, 16/45, 7/90],
[19/288, 25/96, 25/144, 25/144, 25/96, 19/288],
[41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840],
[751/17280, 3577/17280, 49/640, 2989/17280, 2989/17280, 49/640, 3577/17280, 751/17280],
...
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.

Crossrefs

Programs

  • Maple
    (This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
    # Another program:
    T:=proc(n,k) (-1)^(n-k)*(n/(n-1))*binomial(n-1,k-1)* integrate(expand(binomial(t-1,n))/(t-k), t=1..n); end;
    [[1], seq( [seq(T(n,k),k=1..n)], n=2..14)];
  • Mathematica
    a[n_, i_] /; i == 0 || i == n = 1/n!*Sum[n^a StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i] Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Denominator // Take[#, 52] &
    (* Jean-François Alcover, May 17 2011, after Maple prog. *)

A100640 Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 7, 16, 2, 16, 7, 19, 25, 25, 25, 25, 19, 41, 9, 9, 34, 9, 9, 41, 751, 3577, 49, 2989, 2989, 49, 3577, 751, 989, 2944, -464, 5248, -454, 5248, -464, 2944, 989, 2857, 15741, 27, 1209, 2889, 2889, 1209, 27, 15741, 2857, 16067, 26575, -16175, 5675
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.

Crossrefs

Programs

  • Maple
    (This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
    # Another program:
    T:=proc(n, k) (-1)^(n-k)*(n/(n-1))*binomial(n-1, k-1)* integrate(expand(binomial(t-1, n))/(t-k), t=1..n); end;
    [[1], seq( [seq(T(n, k), k=1..n)], n=2..14)];
  • Mathematica
    a[n_, i_] /; i == 0 || i == n = 1/n! Sum[n^a*StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i]*Sum[ n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Numerator //  Take[#, 59]&
    (* Jean-François Alcover, May 17 2011, after Maple prog. *)

A002177 Numerators of Cotesian numbers (not in lowest terms): A002176(n)*C(n,0).

Original entry on oeis.org

1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 2171465, 1364651, 8181904909, 90241897, 35310023, 15043611773, 55294720874657, 203732352169, 69028763155644023, 19470140241329, 1022779523247467, 396760150748100749
Offset: 1

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]* Sum[ n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := cn[n, 0]*LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    cn(n) = mattranspose( matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ]; \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n) = denominator(cn(n)) * cn(n);
    
  • PARI
    nk(n,k) = if(k<0 || k>n, 0, ncn(n)[ k+1 ]);
    
  • PARI
    A002177(n) = nk(n,0);

Extensions

More terms from Michael Somos

A100621 Denominator of Cotesian number C(n,0).

Original entry on oeis.org

1, 2, 6, 8, 90, 288, 840, 17280, 28350, 89600, 598752, 17418240, 63063000, 402361344000, 5003856000, 295206912, 976924698750, 342372925440000, 15209113920000, 5377993912811520000, 96852084769440, 89903156428800000, 37556196837868800000, 73570956727261593600000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			0, 1/2, 1/6, 1/8, 7/90, 19/288, 41/840, 751/17280, 989/28350, 2857/89600, 16067/598752, 434293/17418240, 1364651/63063000, 8181904909/402361344000, ... = A100620/A100621 = A002177/A002176 (the latter is not in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • See A002176 for further references.

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j + 1), {j, 1, n + 1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j + m)*StirlingS1[k, j]*StirlingS1[n - k, m]/((m + 1)*Binomial[j + m + 1, m + 1]), {m, 1, n}, {j, 1, k + 1}]; Table[cn[n, 0] // Denominator, {n, 0, 23}] (* Jean-François Alcover, Jan 16 2013 *)

A002179 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).

Original entry on oeis.org

0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110
Offset: 2

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,2)

Extensions

More terms from Michael Somos

A002178 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,1).

Original entry on oeis.org

1, 4, 3, 32, 75, 216, 3577, 5888, 15741, 106300, 13486539, 9903168, 56280729661, 710986864, 265553865, 127626606592, 450185515446285, 1848730221900, 603652082270808125, 187926090380000, 9545933933230947
Offset: 1

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n]*cn[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,1)

Extensions

More terms from Michael Somos

A100642 Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n) if the denominators are set to the lcm's of the rows (A002176).

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 1, 3, 3, 1, 7, 32, 12, 32, 7, 19, 75, 50, 50, 75, 19, 41, 216, 27, 272, 27, 216, 41, 751, 3577, 1323, 2989, 2989, 1323, 3577, 751, 989, 5888, -928, 10496, -4540, 10496, -928, 5888, 989, 2857, 15741, 1080, 19344, 5778, 5778, 19344, 1080, 15741, 2857, 16067
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			0, 1/2, 1/2, 1/6, 2/3, 1/6, 1/8, 3/8, 3/8, 1/8, 7/90, 16/45, 2/15, 16/45, 7/90, 19/288, 25/96, 25/144, 25/144, 25/96, 19/288, 41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840, ... = A100640/A100641 = A100642/A002176 (the latter is not in lowest terms)
Triangle begins
0;
1, 1;
1, 4, 1;
1, 3, 3, 1;
7, 32, 12, 32, 7;
		

References

  • Carl Erik Froeberg, Numerical Mathematics, Benjamin/Cummings Pu.Co. 1985, ISBN 0-8053-2530-1, Chapter 17.2.
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

Programs

  • Maple
    # (This defines the Cotesian numbers C(n,i))
    with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
    den:=proc(n) local t1,i; t1:=1; for i from 0 to n do t1:=ilcm(t1,denom(C(n,i))); od: t1; end;
    # Then den(n)*C(n,k) gives the current sequence
    seq(seq(den(n,k)*C(n,k), k=0..n), n=0..10);
  • Mathematica
    c[n_, i_] /; i == 0 || i == n = (1/n!)*Sum[n^a*StirlingS1[n, a]/(a+1), {a, 1, n+1}]; c[n_, i_] = (1/n!)*Binomial[n, i]*Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n-i, b]/((b+1)*Binomial[a+b+1, b+1]), {b, 1, n}, {a, 1, i+1}]; den[n_] := (For[t1 = 1; i = 0, i <= n, i++, t1 = LCM[t1, c[n, i] // Denominator]]; t1); Table[den[n]*c[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Maple *)
Showing 1-8 of 8 results.