cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A002177 Numerators of Cotesian numbers (not in lowest terms): A002176(n)*C(n,0).

Original entry on oeis.org

1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 2171465, 1364651, 8181904909, 90241897, 35310023, 15043611773, 55294720874657, 203732352169, 69028763155644023, 19470140241329, 1022779523247467, 396760150748100749
Offset: 1

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]* Sum[ n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := cn[n, 0]*LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    cn(n) = mattranspose( matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ]; \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n) = denominator(cn(n)) * cn(n);
    
  • PARI
    nk(n,k) = if(k<0 || k>n, 0, ncn(n)[ k+1 ]);
    
  • PARI
    A002177(n) = nk(n,0);

Extensions

More terms from Michael Somos

A002179 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).

Original entry on oeis.org

0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110
Offset: 2

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,2)

Extensions

More terms from Michael Somos

A002178 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,1).

Original entry on oeis.org

1, 4, 3, 32, 75, 216, 3577, 5888, 15741, 106300, 13486539, 9903168, 56280729661, 710986864, 265553865, 127626606592, 450185515446285, 1848730221900, 603652082270808125, 187926090380000, 9545933933230947
Offset: 1

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n]*cn[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,1)

Extensions

More terms from Michael Somos

A100642 Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n) if the denominators are set to the lcm's of the rows (A002176).

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 1, 3, 3, 1, 7, 32, 12, 32, 7, 19, 75, 50, 50, 75, 19, 41, 216, 27, 272, 27, 216, 41, 751, 3577, 1323, 2989, 2989, 1323, 3577, 751, 989, 5888, -928, 10496, -4540, 10496, -928, 5888, 989, 2857, 15741, 1080, 19344, 5778, 5778, 19344, 1080, 15741, 2857, 16067
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			0, 1/2, 1/2, 1/6, 2/3, 1/6, 1/8, 3/8, 3/8, 1/8, 7/90, 16/45, 2/15, 16/45, 7/90, 19/288, 25/96, 25/144, 25/144, 25/96, 19/288, 41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840, ... = A100640/A100641 = A100642/A002176 (the latter is not in lowest terms)
Triangle begins
0;
1, 1;
1, 4, 1;
1, 3, 3, 1;
7, 32, 12, 32, 7;
		

References

  • Carl Erik Froeberg, Numerical Mathematics, Benjamin/Cummings Pu.Co. 1985, ISBN 0-8053-2530-1, Chapter 17.2.
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

Programs

  • Maple
    # (This defines the Cotesian numbers C(n,i))
    with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
    den:=proc(n) local t1,i; t1:=1; for i from 0 to n do t1:=ilcm(t1,denom(C(n,i))); od: t1; end;
    # Then den(n)*C(n,k) gives the current sequence
    seq(seq(den(n,k)*C(n,k), k=0..n), n=0..10);
  • Mathematica
    c[n_, i_] /; i == 0 || i == n = (1/n!)*Sum[n^a*StirlingS1[n, a]/(a+1), {a, 1, n+1}]; c[n_, i_] = (1/n!)*Binomial[n, i]*Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n-i, b]/((b+1)*Binomial[a+b+1, b+1]), {b, 1, n}, {a, 1, i+1}]; den[n_] := (For[t1 = 1; i = 0, i <= n, i++, t1 = LCM[t1, c[n, i] // Denominator]]; t1); Table[den[n]*c[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Maple *)

A100641 Triangle read by rows: denominators of Cotesian numbers C(n,k) (0 <= k <= k).

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 8, 8, 8, 8, 90, 45, 15, 45, 90, 288, 96, 144, 144, 96, 288, 840, 35, 280, 105, 280, 35, 840, 17280, 17280, 640, 17280, 17280, 640, 17280, 17280, 28350, 14175, 14175, 14175, 2835, 14175, 14175, 14175, 28350, 89600, 89600, 2240, 5600, 44800, 44800, 5600
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			Triangle A100640/A100641 begins:
[1],
[1/2, 1/2],
[1/6, 2/3, 1/6],
[1/8, 3/8, 3/8, 1/8],
[7/90, 16/45, 2/15, 16/45, 7/90],
[19/288, 25/96, 25/144, 25/144, 25/96, 19/288],
[41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840],
[751/17280, 3577/17280, 49/640, 2989/17280, 2989/17280, 49/640, 3577/17280, 751/17280],
...
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.

Crossrefs

Programs

  • Maple
    (This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
    # Another program:
    T:=proc(n,k) (-1)^(n-k)*(n/(n-1))*binomial(n-1,k-1)* integrate(expand(binomial(t-1,n))/(t-k), t=1..n); end;
    [[1], seq( [seq(T(n,k),k=1..n)], n=2..14)];
  • Mathematica
    a[n_, i_] /; i == 0 || i == n = 1/n!*Sum[n^a StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i] Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Denominator // Take[#, 52] &
    (* Jean-François Alcover, May 17 2011, after Maple prog. *)

A100640 Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 7, 16, 2, 16, 7, 19, 25, 25, 25, 25, 19, 41, 9, 9, 34, 9, 9, 41, 751, 3577, 49, 2989, 2989, 49, 3577, 751, 989, 2944, -464, 5248, -454, 5248, -464, 2944, 989, 2857, 15741, 27, 1209, 2889, 2889, 1209, 27, 15741, 2857, 16067, 26575, -16175, 5675
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.

Crossrefs

Programs

  • Maple
    (This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
    # Another program:
    T:=proc(n, k) (-1)^(n-k)*(n/(n-1))*binomial(n-1, k-1)* integrate(expand(binomial(t-1, n))/(t-k), t=1..n); end;
    [[1], seq( [seq(T(n, k), k=1..n)], n=2..14)];
  • Mathematica
    a[n_, i_] /; i == 0 || i == n = 1/n! Sum[n^a*StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i]*Sum[ n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Numerator //  Take[#, 59]&
    (* Jean-François Alcover, May 17 2011, after Maple prog. *)

A100621 Denominator of Cotesian number C(n,0).

Original entry on oeis.org

1, 2, 6, 8, 90, 288, 840, 17280, 28350, 89600, 598752, 17418240, 63063000, 402361344000, 5003856000, 295206912, 976924698750, 342372925440000, 15209113920000, 5377993912811520000, 96852084769440, 89903156428800000, 37556196837868800000, 73570956727261593600000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			0, 1/2, 1/6, 1/8, 7/90, 19/288, 41/840, 751/17280, 989/28350, 2857/89600, 16067/598752, 434293/17418240, 1364651/63063000, 8181904909/402361344000, ... = A100620/A100621 = A002177/A002176 (the latter is not in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • See A002176 for further references.

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j + 1), {j, 1, n + 1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j + m)*StirlingS1[k, j]*StirlingS1[n - k, m]/((m + 1)*Binomial[j + m + 1, m + 1]), {m, 1, n}, {j, 1, k + 1}]; Table[cn[n, 0] // Denominator, {n, 0, 23}] (* Jean-François Alcover, Jan 16 2013 *)

A100620 Numerator of Cotesian number C(n,0).

Original entry on oeis.org

0, 1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 434293, 1364651, 8181904909, 90241897, 5044289, 15043611773, 5026792806787, 203732352169, 69028763155644023, 1145302367137, 1022779523247467, 396760150748100749, 750218743980105669781, 35200969735190093
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			0, 1/2, 1/6, 1/8, 7/90, 19/288, 41/840, 751/17280, 989/28350, 2857/89600, 16067/598752, 434293/17418240, 1364651/63063000, 8181904909/402361344000, ... = A100620/A100621 = A002177/A002176 (the latter is not in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

See A002176 for further references. A diagonal of A100640/A100641.

Programs

  • Maple
    (This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j + 1), {j, 1, n + 1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j + m)*StirlingS1[k, j]*StirlingS1[n - k, m]/((m + 1)*Binomial[j + m + 1, m + 1]), {m, 1, n}, {j, 1, k + 1}]; Table[cn[n, 0] // Numerator, {n, 0, 24}] (* Jean-François Alcover, Jan 16 2013 *)

A321118 T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.

Original entry on oeis.org

0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
Offset: 0

Views

Author

Keywords

Comments

The n-th row common denominator is factorized out and is given by A321119(n).
Given a continuous function f over the interval [0,n], the best quadrature formula in the sense of Holladay-Sard is given by Integral_{x=0..n} f(x) dx = Sum_{k=0..n} T(n,k)*f(k)/A321119(n). The formula is exact if f belongs to the class of natural cubic splines.

Examples

			Triangle begins (denominator is factored out):
    0;                                                 1/4
    1,   1;                                            1/2
    3,  10,   3;                                       1/8
    4,  11,  11,   4;                                  1/10
   11,  32,  26,  32,  11;                             1/28
   15,  43,  37,  37,  43,  15;                        1/38
   41, 118, 100, 106, 100, 118,  41;                   1/104
   56, 161, 137, 143, 143, 137, 161,  56;              1/142
  153, 440, 374, 392, 386, 392, 374, 440, 153;         1/388
  209, 601, 511, 535, 529, 529, 535, 511, 601, 209;    1/530
  ...
If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.

Crossrefs

Programs

  • Mathematica
    alpha = (Sqrt[2] + Sqrt[6])/2; T[0,0] = 0;
    T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))];
    a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n);
    Table[FullSimplify[a321119[n]*T[n, k]],{n, 0, 10}, {k, 0, n}] // Flatten
  • Maxima
    (b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */
    d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */
    T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$
    create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);

Formula

T(n,k)/A321119(n) = (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*sqrt(6)*(alpha^n + (-alpha)^(-n))) if k = 0 or k = n, and 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n))) if 0 < k < n, where alpha = (sqrt(2) + sqrt(6))/2.
T(n,k) = T(n,n-k).
T(n,k) = 4*T(n-2,k) - T(n-4,k), n >= k + 4.
T(2*n+2,k)*A001834(n+1) = A001834(n)*T(2*n,k) + 2*A003500(n)*T(2*n+1,k) for k < 2*n.
T(2*n+3,k)*A003500(n+1) = A003500(n)*T(2*n+1,k) + 2*A001834(n+1)*T(2*n+2,k) for k < 2*n + 1.
Sum_{k=0..n} T(n,k)/A321119(n) = n.

A321119 a(n) = ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2); n-th row common denominator of A321118.

Original entry on oeis.org

4, 2, 8, 10, 28, 38, 104, 142, 388, 530, 1448, 1978, 5404, 7382, 20168, 27550, 75268, 102818, 280904, 383722, 1048348, 1432070, 3912488, 5344558, 14601604, 19946162, 54493928, 74440090, 203374108, 277814198, 759002504, 1036816702, 2832635908, 3869452610
Offset: 0

Views

Author

Keywords

Examples

			a(0) = ((1 - sqrt(3))^0 + (1 + sqrt(3))^0)/2^floor((0 - 1)/2) = 2*(1 + 1) = 4.
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.

Crossrefs

Cf. A002176 (common denominators of Cotesian numbers).

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -1}, {4, 2, 8, 10}, 50]
  • Maxima
    a(n) := ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2)$
    makelist(ratsimp(a(n)), n, 0, 50);

Formula

a(n) = (((sqrt(2) - sqrt(6))/2)^n + ((sqrt(6) + sqrt(2))/2)^n)*((2 - sqrt(2))*(-1)^n + 2 + sqrt(2))/2.
a(-n) = (-1)^n*a(n).
a(n) = 2*A000034(n+1)*A002531(n).
a(2*n) = 2*A001834(n).
a(2*n+1) = 2*A003500(n).
a(n) = 4*a(n-2) - a(n-4) with a(0) = 4, a(1) = 2, a(2) = 8, a(3) = 10.
a(2*n+3) = a(2*n+1) + a(2*n+2).
a(2*n+2) = a(2*n) + 2*a(2*n+1).
G.f.: 2*(1 - x)*(2 + 3*x - x^2)/(1 - 4*x^2 + x^4).
E.g.f.: (1 + exp(-sqrt(6)*x))*((2 - sqrt(2))*exp(sqrt(2 - sqrt(3))*x) + (2 + sqrt(2))*exp(sqrt(2 + sqrt(3))*x))/2.
Lim_{n->infinity} a(2*n+1)/a(2*n) = (1 + sqrt(3))/2.
Showing 1-10 of 17 results. Next