A002177
Numerators of Cotesian numbers (not in lowest terms): A002176(n)*C(n,0).
Original entry on oeis.org
1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 2171465, 1364651, 8181904909, 90241897, 35310023, 15043611773, 55294720874657, 203732352169, 69028763155644023, 19470140241329, 1022779523247467, 396760150748100749
Offset: 1
- W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]* Sum[ n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := cn[n, 0]*LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Oct 25 2011 *)
-
cn(n) = mattranspose( matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ]; \\ vector of quadrature formula coefficients via matrix solution
-
ncn(n) = denominator(cn(n)) * cn(n);
-
nk(n,k) = if(k<0 || k>n, 0, ncn(n)[ k+1 ]);
-
A002177(n) = nk(n,0);
A002179
Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).
Original entry on oeis.org
0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110
Offset: 2
- W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Oct 08 2013 *)
-
cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
-
ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,2)
A002178
Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,1).
Original entry on oeis.org
1, 4, 3, 32, 75, 216, 3577, 5888, 15741, 106300, 13486539, 9903168, 56280729661, 710986864, 265553865, 127626606592, 450185515446285, 1848730221900, 603652082270808125, 187926090380000, 9545933933230947
Offset: 1
- W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n]*cn[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 08 2013 *)
-
cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
-
ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,1)
A100642
Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n) if the denominators are set to the lcm's of the rows (A002176).
Original entry on oeis.org
0, 1, 1, 1, 4, 1, 1, 3, 3, 1, 7, 32, 12, 32, 7, 19, 75, 50, 50, 75, 19, 41, 216, 27, 272, 27, 216, 41, 751, 3577, 1323, 2989, 2989, 1323, 3577, 751, 989, 5888, -928, 10496, -4540, 10496, -928, 5888, 989, 2857, 15741, 1080, 19344, 5778, 5778, 19344, 1080, 15741, 2857, 16067
Offset: 0
0, 1/2, 1/2, 1/6, 2/3, 1/6, 1/8, 3/8, 3/8, 1/8, 7/90, 16/45, 2/15, 16/45, 7/90, 19/288, 25/96, 25/144, 25/144, 25/96, 19/288, 41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840, ... = A100640/A100641 = A100642/A002176 (the latter is not in lowest terms)
Triangle begins
0;
1, 1;
1, 4, 1;
1, 3, 3, 1;
7, 32, 12, 32, 7;
- Carl Erik Froeberg, Numerical Mathematics, Benjamin/Cummings Pu.Co. 1985, ISBN 0-8053-2530-1, Chapter 17.2.
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
-
# (This defines the Cotesian numbers C(n,i))
with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
den:=proc(n) local t1,i; t1:=1; for i from 0 to n do t1:=ilcm(t1,denom(C(n,i))); od: t1; end;
# Then den(n)*C(n,k) gives the current sequence
seq(seq(den(n,k)*C(n,k), k=0..n), n=0..10);
-
c[n_, i_] /; i == 0 || i == n = (1/n!)*Sum[n^a*StirlingS1[n, a]/(a+1), {a, 1, n+1}]; c[n_, i_] = (1/n!)*Binomial[n, i]*Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n-i, b]/((b+1)*Binomial[a+b+1, b+1]), {b, 1, n}, {a, 1, i+1}]; den[n_] := (For[t1 = 1; i = 0, i <= n, i++, t1 = LCM[t1, c[n, i] // Denominator]]; t1); Table[den[n]*c[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Maple *)
A100641
Triangle read by rows: denominators of Cotesian numbers C(n,k) (0 <= k <= k).
Original entry on oeis.org
1, 2, 2, 6, 3, 6, 8, 8, 8, 8, 90, 45, 15, 45, 90, 288, 96, 144, 144, 96, 288, 840, 35, 280, 105, 280, 35, 840, 17280, 17280, 640, 17280, 17280, 640, 17280, 17280, 28350, 14175, 14175, 14175, 2835, 14175, 14175, 14175, 28350, 89600, 89600, 2240, 5600, 44800, 44800, 5600
Offset: 0
Triangle A100640/A100641 begins:
[1],
[1/2, 1/2],
[1/6, 2/3, 1/6],
[1/8, 3/8, 3/8, 1/8],
[7/90, 16/45, 2/15, 16/45, 7/90],
[19/288, 25/96, 25/144, 25/144, 25/96, 19/288],
[41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840],
[751/17280, 3577/17280, 49/640, 2989/17280, 2989/17280, 49/640, 3577/17280, 751/17280],
...
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
- L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.
-
(This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
# Another program:
T:=proc(n,k) (-1)^(n-k)*(n/(n-1))*binomial(n-1,k-1)* integrate(expand(binomial(t-1,n))/(t-k), t=1..n); end;
[[1], seq( [seq(T(n,k),k=1..n)], n=2..14)];
-
a[n_, i_] /; i == 0 || i == n = 1/n!*Sum[n^a StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i] Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Denominator // Take[#, 52] &
(* Jean-François Alcover, May 17 2011, after Maple prog. *)
A100640
Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n).
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 7, 16, 2, 16, 7, 19, 25, 25, 25, 25, 19, 41, 9, 9, 34, 9, 9, 41, 751, 3577, 49, 2989, 2989, 49, 3577, 751, 989, 2944, -464, 5248, -454, 5248, -464, 2944, 989, 2857, 15741, 27, 1209, 2889, 2889, 1209, 27, 15741, 2857, 16067, 26575, -16175, 5675
Offset: 0
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
- L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.
-
(This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
# Another program:
T:=proc(n, k) (-1)^(n-k)*(n/(n-1))*binomial(n-1, k-1)* integrate(expand(binomial(t-1, n))/(t-k), t=1..n); end;
[[1], seq( [seq(T(n, k), k=1..n)], n=2..14)];
-
a[n_, i_] /; i == 0 || i == n = 1/n! Sum[n^a*StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i]*Sum[ n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Numerator // Take[#, 59]&
(* Jean-François Alcover, May 17 2011, after Maple prog. *)
A100621
Denominator of Cotesian number C(n,0).
Original entry on oeis.org
1, 2, 6, 8, 90, 288, 840, 17280, 28350, 89600, 598752, 17418240, 63063000, 402361344000, 5003856000, 295206912, 976924698750, 342372925440000, 15209113920000, 5377993912811520000, 96852084769440, 89903156428800000, 37556196837868800000, 73570956727261593600000
Offset: 0
0, 1/2, 1/6, 1/8, 7/90, 19/288, 41/840, 751/17280, 989/28350, 2857/89600, 16067/598752, 434293/17418240, 1364651/63063000, 8181904909/402361344000, ... = A100620/A100621 = A002177/A002176 (the latter is not in lowest terms)
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
- See A002176 for further references.
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j + 1), {j, 1, n + 1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j + m)*StirlingS1[k, j]*StirlingS1[n - k, m]/((m + 1)*Binomial[j + m + 1, m + 1]), {m, 1, n}, {j, 1, k + 1}]; Table[cn[n, 0] // Denominator, {n, 0, 23}] (* Jean-François Alcover, Jan 16 2013 *)
A100620
Numerator of Cotesian number C(n,0).
Original entry on oeis.org
0, 1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 434293, 1364651, 8181904909, 90241897, 5044289, 15043611773, 5026792806787, 203732352169, 69028763155644023, 1145302367137, 1022779523247467, 396760150748100749, 750218743980105669781, 35200969735190093
Offset: 0
0, 1/2, 1/6, 1/8, 7/90, 19/288, 41/840, 751/17280, 989/28350, 2857/89600, 16067/598752, 434293/17418240, 1364651/63063000, 8181904909/402361344000, ... = A100620/A100621 = A002177/A002176 (the latter is not in lowest terms)
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
-
(This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j + 1), {j, 1, n + 1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j + m)*StirlingS1[k, j]*StirlingS1[n - k, m]/((m + 1)*Binomial[j + m + 1, m + 1]), {m, 1, n}, {j, 1, k + 1}]; Table[cn[n, 0] // Numerator, {n, 0, 24}] (* Jean-François Alcover, Jan 16 2013 *)
A321118
T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.
Original entry on oeis.org
0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
Offset: 0
Triangle begins (denominator is factored out):
0; 1/4
1, 1; 1/2
3, 10, 3; 1/8
4, 11, 11, 4; 1/10
11, 32, 26, 32, 11; 1/28
15, 43, 37, 37, 43, 15; 1/38
41, 118, 100, 106, 100, 118, 41; 1/104
56, 161, 137, 143, 143, 137, 161, 56; 1/142
153, 440, 374, 392, 386, 392, 374, 440, 153; 1/388
209, 601, 511, 535, 529, 529, 535, 511, 601, 209; 1/530
...
If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
- Franck Maminirina Ramaharo, Rows n = 0..150 of triangle, flattened
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), p. 9-74.
- John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
- Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
- Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
- Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
- Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
- Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
-
alpha = (Sqrt[2] + Sqrt[6])/2; T[0,0] = 0;
T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))];
a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n);
Table[FullSimplify[a321119[n]*T[n, k]],{n, 0, 10}, {k, 0, n}] // Flatten
-
(b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */
d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */
T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$
create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);
A321119
a(n) = ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2); n-th row common denominator of A321118.
Original entry on oeis.org
4, 2, 8, 10, 28, 38, 104, 142, 388, 530, 1448, 1978, 5404, 7382, 20168, 27550, 75268, 102818, 280904, 383722, 1048348, 1432070, 3912488, 5344558, 14601604, 19946162, 54493928, 74440090, 203374108, 277814198, 759002504, 1036816702, 2832635908, 3869452610
Offset: 0
a(0) = ((1 - sqrt(3))^0 + (1 + sqrt(3))^0)/2^floor((0 - 1)/2) = 2*(1 + 1) = 4.
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
- Encyclopedia of Mathematics, Quadrature formula
- John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
- Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
- Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
- Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
- Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
- Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
Cf.
A002176 (common denominators of Cotesian numbers).
-
LinearRecurrence[{0, 4, 0, -1}, {4, 2, 8, 10}, 50]
-
a(n) := ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2)$
makelist(ratsimp(a(n)), n, 0, 50);
Showing 1-10 of 17 results.
Comments