cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A002176 a(n) = LCM of denominators of Cotesian numbers {C(n,k), 0 <= k <= n}.

Original entry on oeis.org

2, 6, 8, 90, 288, 840, 17280, 28350, 89600, 598752, 87091200, 63063000, 402361344000, 5003856000, 2066448384, 976924698750, 3766102179840000, 15209113920000, 5377993912811520000, 1646485441080480, 89903156428800000
Offset: 1

Views

Author

Keywords

Comments

See A100640 for definition of C(n,k).

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 886.
  • Louis Brand, Differential and Difference Equations, 1966, p. 612.
  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    Define C(n,k) as in A100640, then: A002176:=proc(n) local t1,k; t1:=1; for k from 0 to n do t1:=lcm(t1,denom(C(n,k))); od: t1; end;
  • Mathematica
    cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    A002176(n)= denominator(cn(n))

Extensions

More terms and references from Michael Somos

A100641 Triangle read by rows: denominators of Cotesian numbers C(n,k) (0 <= k <= k).

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 8, 8, 8, 8, 90, 45, 15, 45, 90, 288, 96, 144, 144, 96, 288, 840, 35, 280, 105, 280, 35, 840, 17280, 17280, 640, 17280, 17280, 640, 17280, 17280, 28350, 14175, 14175, 14175, 2835, 14175, 14175, 14175, 28350, 89600, 89600, 2240, 5600, 44800, 44800, 5600
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			Triangle A100640/A100641 begins:
[1],
[1/2, 1/2],
[1/6, 2/3, 1/6],
[1/8, 3/8, 3/8, 1/8],
[7/90, 16/45, 2/15, 16/45, 7/90],
[19/288, 25/96, 25/144, 25/144, 25/96, 19/288],
[41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840],
[751/17280, 3577/17280, 49/640, 2989/17280, 2989/17280, 49/640, 3577/17280, 751/17280],
...
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
  • L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.

Crossrefs

Programs

  • Maple
    (This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
    # Another program:
    T:=proc(n,k) (-1)^(n-k)*(n/(n-1))*binomial(n-1,k-1)* integrate(expand(binomial(t-1,n))/(t-k), t=1..n); end;
    [[1], seq( [seq(T(n,k),k=1..n)], n=2..14)];
  • Mathematica
    a[n_, i_] /; i == 0 || i == n = 1/n!*Sum[n^a StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i] Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Denominator // Take[#, 52] &
    (* Jean-François Alcover, May 17 2011, after Maple prog. *)

A002177 Numerators of Cotesian numbers (not in lowest terms): A002176(n)*C(n,0).

Original entry on oeis.org

1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 2171465, 1364651, 8181904909, 90241897, 35310023, 15043611773, 55294720874657, 203732352169, 69028763155644023, 19470140241329, 1022779523247467, 396760150748100749
Offset: 1

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]* Sum[ n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := cn[n, 0]*LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    cn(n) = mattranspose( matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ]; \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n) = denominator(cn(n)) * cn(n);
    
  • PARI
    nk(n,k) = if(k<0 || k>n, 0, ncn(n)[ k+1 ]);
    
  • PARI
    A002177(n) = nk(n,0);

Extensions

More terms from Michael Somos

A100620 Numerator of Cotesian number C(n,0).

Original entry on oeis.org

0, 1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 434293, 1364651, 8181904909, 90241897, 5044289, 15043611773, 5026792806787, 203732352169, 69028763155644023, 1145302367137, 1022779523247467, 396760150748100749, 750218743980105669781, 35200969735190093
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2004

Keywords

Examples

			0, 1/2, 1/6, 1/8, 7/90, 19/288, 41/840, 751/17280, 989/28350, 2857/89600, 16067/598752, 434293/17418240, 1364651/63063000, 8181904909/402361344000, ... = A100620/A100621 = A002177/A002176 (the latter is not in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

See A002176 for further references. A diagonal of A100640/A100641.

Programs

  • Maple
    (This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j + 1), {j, 1, n + 1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j + m)*StirlingS1[k, j]*StirlingS1[n - k, m]/((m + 1)*Binomial[j + m + 1, m + 1]), {m, 1, n}, {j, 1, k + 1}]; Table[cn[n, 0] // Numerator, {n, 0, 24}] (* Jean-François Alcover, Jan 16 2013 *)

A002179 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).

Original entry on oeis.org

0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110
Offset: 2

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,2)

Extensions

More terms from Michael Somos

A321118 T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.

Original entry on oeis.org

0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
Offset: 0

Views

Author

Keywords

Comments

The n-th row common denominator is factorized out and is given by A321119(n).
Given a continuous function f over the interval [0,n], the best quadrature formula in the sense of Holladay-Sard is given by Integral_{x=0..n} f(x) dx = Sum_{k=0..n} T(n,k)*f(k)/A321119(n). The formula is exact if f belongs to the class of natural cubic splines.

Examples

			Triangle begins (denominator is factored out):
    0;                                                 1/4
    1,   1;                                            1/2
    3,  10,   3;                                       1/8
    4,  11,  11,   4;                                  1/10
   11,  32,  26,  32,  11;                             1/28
   15,  43,  37,  37,  43,  15;                        1/38
   41, 118, 100, 106, 100, 118,  41;                   1/104
   56, 161, 137, 143, 143, 137, 161,  56;              1/142
  153, 440, 374, 392, 386, 392, 374, 440, 153;         1/388
  209, 601, 511, 535, 529, 529, 535, 511, 601, 209;    1/530
  ...
If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.

Crossrefs

Programs

  • Mathematica
    alpha = (Sqrt[2] + Sqrt[6])/2; T[0,0] = 0;
    T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))];
    a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n);
    Table[FullSimplify[a321119[n]*T[n, k]],{n, 0, 10}, {k, 0, n}] // Flatten
  • Maxima
    (b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */
    d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */
    T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$
    create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);

Formula

T(n,k)/A321119(n) = (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*sqrt(6)*(alpha^n + (-alpha)^(-n))) if k = 0 or k = n, and 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n))) if 0 < k < n, where alpha = (sqrt(2) + sqrt(6))/2.
T(n,k) = T(n,n-k).
T(n,k) = 4*T(n-2,k) - T(n-4,k), n >= k + 4.
T(2*n+2,k)*A001834(n+1) = A001834(n)*T(2*n,k) + 2*A003500(n)*T(2*n+1,k) for k < 2*n.
T(2*n+3,k)*A003500(n+1) = A003500(n)*T(2*n+1,k) + 2*A001834(n+1)*T(2*n+2,k) for k < 2*n + 1.
Sum_{k=0..n} T(n,k)/A321119(n) = n.

A002178 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,1).

Original entry on oeis.org

1, 4, 3, 32, 75, 216, 3577, 5888, 15741, 106300, 13486539, 9903168, 56280729661, 710986864, 265553865, 127626606592, 450185515446285, 1848730221900, 603652082270808125, 187926090380000, 9545933933230947
Offset: 1

Views

Author

Keywords

References

  • W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n]*cn[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
    
  • PARI
    ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,1)

Extensions

More terms from Michael Somos

A100646 Denominator of Cotesian number C(n,2).

Original entry on oeis.org

6, 8, 15, 144, 280, 640, 14175, 2240, 199584, 87091200, 875875, 22353408000, 5003856000, 229605376, 10854718875, 941525544960000, 1013940928000, 3064383995904000, 82324272054024, 2996771880960000, 255484332230400000, 809280523999877529600000, 5699209469078125
Offset: 2

Views

Author

N. J. A. Sloane, Dec 05 2004

Keywords

Examples

			1/6, 3/8, 2/15, 25/144, 9/280, 49/640, -464/14175, 27/2240, -16175/199584, -3237113/87091200, -105387/875875, -1737125143/22353408000, -770720657/5003856000, -25881785/229605376, ... = A100645/A100646 = A002179/A002176 (the latter not being in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

Cf. A100645.
See A002176 for further references. A diagonal of A100640/A100641.

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := Denominator[cn[n, 2]]; Table[a[n], {n, 2, 24}]  (* Jean-François Alcover, Oct 08 2013 *)

A100648 Denominator of Cotesian number C(n,3).

Original entry on oeis.org

8, 45, 144, 105, 17280, 14175, 5600, 12474, 1935360, 1576575, 28740096000, 156370500, 688816128, 97692469875, 26900729856000, 158428270000, 32593902501888000, 3430178002251, 1798063128576000, 988320969417600, 809280523999877529600000, 461635966995328125
Offset: 3

Views

Author

N. J. A. Sloane, Dec 05 2004

Keywords

Examples

			1/8, 16/45, 25/144, 34/105, 2989/17280, 5248/14175, 1209/5600, 5675/12474, 560593/1935360, 893128/1576575, 11148172711/28740096000, 109420087/156370500, ... = A100627/A100628
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

See A002176 for further references. A diagonal of A100640/A100641.

A321121 Triangle read by rows: T(n,k) is the unreduced numerator of the k-th weight in the quadrature rule for parabolic runout spline with respect to a mesh of n + 1 points.

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 3, 9, 9, 3, 13, 44, 30, 44, 13, 35, 115, 90, 90, 115, 35, 16, 53, 40, 46, 40, 53, 16, 131, 433, 330, 366, 366, 330, 433, 131, 179, 592, 450, 504, 486, 504, 450, 592, 179, 163, 539, 410, 458, 446, 446, 458, 410, 539, 163, 668, 2209, 1680, 1878, 1824, 1842, 1824, 1878, 1680, 2209, 668
Offset: 0

Views

Author

Keywords

Comments

The weights in this quadrature rule are T(n,k)/A321122(n), 0 <= k <= n. For n = 1, 2, 3, we obtain the trapezoid rule, Simpson's rule, and Simpson's 3/8 rule, respectively.

Examples

			Triangle begins (denominator is factored out):
    0;                                                 1/4
    1,   1;                                            1/2
    1,   4,   1;                                       1/3
    3,   9,   9,   3;                                  1/8
   13,  44,  30,  44,  13;                             1/36
   35, 115,  90,  90, 115,  35;                        1/96
   16,  53,  40,  46,  40,  53,  16;                   1/44
  131, 433, 330, 366, 366, 330, 433, 131;              1/360
  179, 592, 450, 504, 486, 504, 450, 592, 179;         1/492
  163, 539, 410, 458, 446, 446, 458, 410, 539, 163;    1/448
  ...
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.

Crossrefs

Cf. A321122 (Common denominators).
Cf. A093735/A093736 (Newton-Cotes formulas), A100640/A100641 (Cotesian numbers), A321118/A321119 (Holladay-Sard best quadrature formulas).

Programs

  • Mathematica
    s = -2 + Sqrt[3];
    e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
    f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
    w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
    a321122[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}]
    Join[{0, 1, 1, 1, 4, 1}, Table[FullSimplify[a321122[n]*w[n, k]], {n, 3, 12}, {k, 0, n}]] // Flatten
  • Maxima
    s : -2 + sqrt(3)$
    e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
    f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
    w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
    a321122(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
    append([0, 1, 1, 1, 4, 1], create_list(fullratsimp(a321122(n)*w(n, k)), n, 3, 12, k, 0, n));

Formula

T(n,k) = T(n,n-k).
T(0,0) = 0 and T(n,k) = A093735(n,k) for n = 1, 2, 3.
Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then T(n,k) = A321122(n)*w(n,k) for 0 <= k <= n, n >= 3.
Showing 1-10 of 17 results. Next