A002176
a(n) = LCM of denominators of Cotesian numbers {C(n,k), 0 <= k <= n}.
Original entry on oeis.org
2, 6, 8, 90, 288, 840, 17280, 28350, 89600, 598752, 87091200, 63063000, 402361344000, 5003856000, 2066448384, 976924698750, 3766102179840000, 15209113920000, 5377993912811520000, 1646485441080480, 89903156428800000
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 886.
- Louis Brand, Differential and Difference Equations, 1966, p. 612.
- W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 886.
- W. M. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65. [Annotated scanned copy]
-
Define C(n,k) as in A100640, then: A002176:=proc(n) local t1,k; t1:=1; for k from 0 to n do t1:=lcm(t1,denom(C(n,k))); od: t1; end;
-
cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 25 2011 *)
-
cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
-
A002176(n)= denominator(cn(n))
A100640
Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n).
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 7, 16, 2, 16, 7, 19, 25, 25, 25, 25, 19, 41, 9, 9, 34, 9, 9, 41, 751, 3577, 49, 2989, 2989, 49, 3577, 751, 989, 2944, -464, 5248, -454, 5248, -464, 2944, 989, 2857, 15741, 27, 1209, 2889, 2889, 1209, 27, 15741, 2857, 16067, 26575, -16175, 5675
Offset: 0
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
- L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.
-
(This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
# Another program:
T:=proc(n, k) (-1)^(n-k)*(n/(n-1))*binomial(n-1, k-1)* integrate(expand(binomial(t-1, n))/(t-k), t=1..n); end;
[[1], seq( [seq(T(n, k), k=1..n)], n=2..14)];
-
a[n_, i_] /; i == 0 || i == n = 1/n! Sum[n^a*StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i]*Sum[ n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Numerator // Take[#, 59]&
(* Jean-François Alcover, May 17 2011, after Maple prog. *)
A002177
Numerators of Cotesian numbers (not in lowest terms): A002176(n)*C(n,0).
Original entry on oeis.org
1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 2171465, 1364651, 8181904909, 90241897, 35310023, 15043611773, 55294720874657, 203732352169, 69028763155644023, 19470140241329, 1022779523247467, 396760150748100749
Offset: 1
- W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]* Sum[ n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := cn[n, 0]*LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Oct 25 2011 *)
-
cn(n) = mattranspose( matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ]; \\ vector of quadrature formula coefficients via matrix solution
-
ncn(n) = denominator(cn(n)) * cn(n);
-
nk(n,k) = if(k<0 || k>n, 0, ncn(n)[ k+1 ]);
-
A002177(n) = nk(n,0);
A100620
Numerator of Cotesian number C(n,0).
Original entry on oeis.org
0, 1, 1, 1, 7, 19, 41, 751, 989, 2857, 16067, 434293, 1364651, 8181904909, 90241897, 5044289, 15043611773, 5026792806787, 203732352169, 69028763155644023, 1145302367137, 1022779523247467, 396760150748100749, 750218743980105669781, 35200969735190093
Offset: 0
0, 1/2, 1/6, 1/8, 7/90, 19/288, 41/840, 751/17280, 989/28350, 2857/89600, 16067/598752, 434293/17418240, 1364651/63063000, 8181904909/402361344000, ... = A100620/A100621 = A002177/A002176 (the latter is not in lowest terms)
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
-
(This defines the Cotesian numbers C(n,i)) with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j + 1), {j, 1, n + 1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j + m)*StirlingS1[k, j]*StirlingS1[n - k, m]/((m + 1)*Binomial[j + m + 1, m + 1]), {m, 1, n}, {j, 1, k + 1}]; Table[cn[n, 0] // Numerator, {n, 0, 24}] (* Jean-François Alcover, Jan 16 2013 *)
A002179
Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).
Original entry on oeis.org
0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110
Offset: 2
- W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Oct 08 2013 *)
-
cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
-
ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,2)
A321118
T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.
Original entry on oeis.org
0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
Offset: 0
Triangle begins (denominator is factored out):
0; 1/4
1, 1; 1/2
3, 10, 3; 1/8
4, 11, 11, 4; 1/10
11, 32, 26, 32, 11; 1/28
15, 43, 37, 37, 43, 15; 1/38
41, 118, 100, 106, 100, 118, 41; 1/104
56, 161, 137, 143, 143, 137, 161, 56; 1/142
153, 440, 374, 392, 386, 392, 374, 440, 153; 1/388
209, 601, 511, 535, 529, 529, 535, 511, 601, 209; 1/530
...
If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
- Franck Maminirina Ramaharo, Rows n = 0..150 of triangle, flattened
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), p. 9-74.
- John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
- Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
- Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
- Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
- Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
- Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
-
alpha = (Sqrt[2] + Sqrt[6])/2; T[0,0] = 0;
T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))];
a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n);
Table[FullSimplify[a321119[n]*T[n, k]],{n, 0, 10}, {k, 0, n}] // Flatten
-
(b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */
d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */
T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$
create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);
A002178
Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,1).
Original entry on oeis.org
1, 4, 3, 32, 75, 216, 3577, 5888, 15741, 106300, 13486539, 9903168, 56280729661, 710986864, 265553865, 127626606592, 450185515446285, 1848730221900, 603652082270808125, 187926090380000, 9545933933230947
Offset: 1
- W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n]*cn[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Oct 08 2013 *)
-
cn(n)= mattranspose(matinverseimage( matrix(n+1,n+1,k,m,(m-1)^(k-1)),matrix(n+1,1,k,m,n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
-
ncn(n)= denominator(cn(n))*cn(n); nk(n,k)= if(k<0 || k>n,0,ncn(n)[ k+1 ]); A002177(n)= nk(n,1)
A100646
Denominator of Cotesian number C(n,2).
Original entry on oeis.org
6, 8, 15, 144, 280, 640, 14175, 2240, 199584, 87091200, 875875, 22353408000, 5003856000, 229605376, 10854718875, 941525544960000, 1013940928000, 3064383995904000, 82324272054024, 2996771880960000, 255484332230400000, 809280523999877529600000, 5699209469078125
Offset: 2
1/6, 3/8, 2/15, 25/144, 9/280, 49/640, -464/14175, 27/2240, -16175/199584, -3237113/87091200, -105387/875875, -1737125143/22353408000, -770720657/5003856000, -25881785/229605376, ... = A100645/A100646 = A002179/A002176 (the latter not being in lowest terms)
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := Denominator[cn[n, 2]]; Table[a[n], {n, 2, 24}] (* Jean-François Alcover, Oct 08 2013 *)
A100648
Denominator of Cotesian number C(n,3).
Original entry on oeis.org
8, 45, 144, 105, 17280, 14175, 5600, 12474, 1935360, 1576575, 28740096000, 156370500, 688816128, 97692469875, 26900729856000, 158428270000, 32593902501888000, 3430178002251, 1798063128576000, 988320969417600, 809280523999877529600000, 461635966995328125
Offset: 3
1/8, 16/45, 25/144, 34/105, 2989/17280, 5248/14175, 1209/5600, 5675/12474, 560593/1935360, 893128/1576575, 11148172711/28740096000, 109420087/156370500, ... = A100627/A100628
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
A321121
Triangle read by rows: T(n,k) is the unreduced numerator of the k-th weight in the quadrature rule for parabolic runout spline with respect to a mesh of n + 1 points.
Original entry on oeis.org
0, 1, 1, 1, 4, 1, 3, 9, 9, 3, 13, 44, 30, 44, 13, 35, 115, 90, 90, 115, 35, 16, 53, 40, 46, 40, 53, 16, 131, 433, 330, 366, 366, 330, 433, 131, 179, 592, 450, 504, 486, 504, 450, 592, 179, 163, 539, 410, 458, 446, 446, 458, 410, 539, 163, 668, 2209, 1680, 1878, 1824, 1842, 1824, 1878, 1680, 2209, 668
Offset: 0
Triangle begins (denominator is factored out):
0; 1/4
1, 1; 1/2
1, 4, 1; 1/3
3, 9, 9, 3; 1/8
13, 44, 30, 44, 13; 1/36
35, 115, 90, 90, 115, 35; 1/96
16, 53, 40, 46, 40, 53, 16; 1/44
131, 433, 330, 366, 366, 330, 433, 131; 1/360
179, 592, 450, 504, 486, 504, 450, 592, 179; 1/492
163, 539, 410, 458, 446, 446, 458, 410, 539, 163; 1/448
...
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.
-
s = -2 + Sqrt[3];
e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
a321122[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}]
Join[{0, 1, 1, 1, 4, 1}, Table[FullSimplify[a321122[n]*w[n, k]], {n, 3, 12}, {k, 0, n}]] // Flatten
-
s : -2 + sqrt(3)$
e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
a321122(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
append([0, 1, 1, 1, 4, 1], create_list(fullratsimp(a321122(n)*w(n, k)), n, 3, 12, k, 0, n));
Showing 1-10 of 17 results.
Comments