cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100733 a(n) = (4*n)!.

Original entry on oeis.org

1, 24, 40320, 479001600, 20922789888000, 2432902008176640000, 620448401733239439360000, 304888344611713860501504000000, 263130836933693530167218012160000000, 371993326789901217467999448150835200000000, 815915283247897734345611269596115894272000000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

From Karol A. Penson, Jun 11 2009: (Start)
Integral representation of a(n) as n-th moment of a positive function W(x) = (1/4)*exp(-x^(1/4))/x^(3/4) on the positive axis:
a(n) = Integral_{x=0..oo} x^n*W(x) dx = Integral_{x=0..oo} x^n*(1/4)*exp(-x^(1/4))/x^(3/4) dx, n >= 0.
This is the solution of the Stieltjes moment problem with the moments a(n), n >= 0.
As the moments a(n) grow very rapidly this suggests, but does not prove, that this solution may not be unique.
This is indeed the case as by construction the following "doubly" infinite family:
V(k,a,x) = (1/4)*exp(-x^(1/4))*(a*sin((3/4)*Pi*k + tan((1/4)*Pi*k)*x^(1/4)) + 1)/x^(3/4),
with the restrictions k=+-1,+-2,..., abs(a) < 1 is still positive on 0 <= x < infinity and has moments a(n).
(End)

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^4).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(Pi)*2^(8*n+3/2)*n^(4*n+1/2)/exp(4*n).
Sum_{n>=0} 1/a(n) = (cos(1) + cosh(1))/2 = 1.04169147034169174... = A332890. (End)
Sum_{n>=0} (-1)^n/a(n) = cos(1/sqrt(2))*cosh(1/sqrt(2)). - Amiram Eldar, Feb 14 2021

Extensions

More terms from Harvey P. Dale, Oct 03 2014