A100995 If n is a prime power p^m, m >= 1, then m, otherwise 0.
0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 0, 1, 0, 0, 4, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 5, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1
Keywords
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000
Programs
-
Haskell
a100995 n = f 0 n where f e 1 = e f e x = if r > 0 then 0 else f (e + 1) x' where (x', r) = divMod x p p = a020639 n -- Reinhard Zumkeller, Mar 19 2013
-
Maple
f:= proc(n) local F; F:= ifactors(n)[2]; if nops(F) = 1 then F[1][2] else 0 fi end proc: map(f, [$1..100]); # Robert Israel, Jun 09 2015
-
Mathematica
ppm[n_]:=If[PrimePowerQ[n],FactorInteger[n][[1,2]],0]; Array[ppm,110] (* Harvey P. Dale, Mar 03 2014 *) a=Table[Limit[Sum[If[Mod[n, k] == 0, MoebiusMu[n/k]/(n/k)^(s - 1)/(1 - 1/n^(s - 1)), 0], {k, 1, n}], s -> 1], {n, 1, 105}]; Numerator[a]*Denominator[a] (* Mats Granvik, Jun 09 2015 *) a = FullSimplify[Table[MangoldtLambda[n]/Log[n], {n, 1, 105}]] Numerator[a]*Denominator[a] (* Mats Granvik, Jun 09 2015 *)
-
PARI
{a(n) = my(t); if( n<1, 0, t = factor(n); if( [1,2] == matsize(t), t[1,2], 0))} /* Michael Somos, Aug 15 2012 */
-
PARI
{a(n) = my(t); if( n<1, 0, if( t = isprimepower(n), t))} /* Michael Somos, Aug 15 2012 */
Formula
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * bigomega(d). - Ilya Gutkovskiy, Apr 15 2021
Extensions
Edited by Daniel Forgues and N. J. A. Sloane, Aug 18 2009
Comments