cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A218688 Number of ways to linearly arrange the trees over all forests on n labeled nodes.

Original entry on oeis.org

1, 1, 3, 15, 106, 975, 11106, 151501, 2415960, 44221869, 915826600, 21211128411, 544126606992, 15334985416075, 471495297242256, 15719617534811625, 565271886957356416, 21820620411482896089, 900398349688515500160, 39564926462522623540519, 1845034125763359894240000
Offset: 0

Views

Author

Geoffrey Critzer, Nov 04 2012

Keywords

Crossrefs

Cf. A101313.

Programs

  • Maple
    T:= -LambertW(-x):
    egf:= 1/(1-T+T^2/2):
    a:= n-> n! * coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 04 2012
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[1/(1-t+t^2/2),{x,0,nn}],x]
  • PARI
    A218688_vec(n,A=List(1))={until(#A>n,listput(A,sum(k=1,#A,binomial(#A,k)*k^(k-2)*A[#A-k+1])));Vec(A)} \\ M. F. Hasler, Jan 26 2020

Formula

E.g.f.: 1/(1- T(x) + T(x)^2/2) where T(x) is e.g.f. for A000169.
a(n) = Sum_{m=1..n} A105599(n,m)*m!.
a(n) ~ 4*n^(n-2). - Vaclav Kotesovec, Aug 16 2013
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^(k-2) * a(n-k). - Ilya Gutkovskiy, Jan 26 2020

A106834 Triangle read by rows: T(n, m) = number of painted forests on labeled vertex set [n] with m trees. Also number of painted forests with exactly n - m edges.

Original entry on oeis.org

1, 1, 2, 3, 6, 3, 16, 30, 18, 4, 125, 220, 135, 40, 5, 1296, 2160, 1305, 420, 75, 6, 16807, 26754, 15750, 5180, 1050, 126, 7, 262144, 401408, 229824, 75460, 16100, 2268, 196, 8, 4782969, 7085880, 3949722, 1282176, 278775, 42336, 4410, 288, 9
Offset: 1

Views

Author

Washington Bomfim, May 19 2005

Keywords

Comments

Row sums equal A101313 (Number of painted forests - exactly one of its trees is painted - on labeled vertex set [n].).

Examples

			T(4,3) = 18 because there are 18 such forests with 4 nodes and 3 trees. (See the illustration of this sequence).
Triangle begins:
1;
1,         2;
3,         6,     3;
16,       30,    18,    4;
125,     220,   135,   40,    5;
1296,   2160,  1305,  420,   75,   6;
16807, 26754, 15750, 5180, 1050, 126,  7;
		

Crossrefs

Programs

  • Maple
    f:= proc(n,m) option remember;
          if n<0 then 0
        elif n=m then 1
        elif m<1 or m>n then 0
        else add(binomial(n-1,j-1) *j^(j-2) *f(n-j,m-1), j=1..n-m+1)
          fi
        end:
    T:= (n,m)-> m*f(n,m):
    seq(seq(T(n, m), m=1..n), n=1..12); # Alois P. Heinz, Sep 10 2008
  • Mathematica
    f[n_, m_] := f[n, m] = Which[n<0, 0, n == m, 1, m<1 || m>n, 0, True, Sum[ Binomial[n-1, j-1]*j^(j-2)*f[n-j, m-1], {j, 1, n-m+1}]]; T[n_, m_] := m*f[n, m]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

T(n, m)= m * f(n, m), where f(n, m) = number of forests with n nodes and m labeled trees, A105599.
E.g.f.: y*B(x)*exp(y*B(x)), where B(x) is e.g.f. for A000272. - Vladeta Jovovic, May 24 2005

A218691 Number of ways to paint some (possibly none or all) of the trees over all forests on n labeled nodes.

Original entry on oeis.org

1, 2, 6, 26, 156, 1242, 12616, 158034, 2372880, 41725106, 843126624, 19277549898, 492447987136, 13907344659210, 430397513894016, 14487404695687298, 527023721684738304, 20605894357093102434, 861761850029367846400, 38387125875316048363386, 1814541564588778500135936
Offset: 0

Views

Author

Geoffrey Critzer, Nov 04 2012

Keywords

Crossrefs

Cf. A101313.

Programs

  • Maple
    T:= -LambertW(-x):
    egf:= exp(T-T^2/2)^2:
    a:= n-> n! * coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 04 2012
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[(t-t^2/2)]^2,{x,0,nn}],x]

Formula

E.g.f.: exp(T(x) - T(x)^2/2)^2 where T(x) is e.g.f. for A000169.
a(n) = Sum_{m=1..n} A105599(n,m)*2^m.
a(n) ~ 2*n^(n-2)*exp(1). - Vaclav Kotesovec, Aug 16 2013
Showing 1-3 of 3 results.