A101357 Partial sums of A060354.
0, 1, 3, 9, 25, 60, 126, 238, 414, 675, 1045, 1551, 2223, 3094, 4200, 5580, 7276, 9333, 11799, 14725, 18165, 22176, 26818, 32154, 38250, 45175, 53001, 61803, 71659, 82650, 94860, 108376, 123288, 139689, 157675, 177345, 198801, 222148, 247494
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Polygonal number
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n^4-2*n^3+3*n^2+6*n)/8: n in [0..40]]; // Vincenzo Librandi, Aug 06 2011
-
Mathematica
Table[Sum[(i*(i - 2)^2 + i^2)/2, {i, 0, n}], {n, 0, 38}] Accumulate[Table[(n (n-2)^2+n^2)/2,{n,0,50}]] (* Harvey P. Dale, Aug 05 2011 *)
-
PARI
a(n)=(n^4-2*n^3+3*n^2+6*n)/8 \\ Charles R Greathouse IV, Oct 16 2015
Formula
a(n) = Sum_{i=0..n} (i(i-2)^2 + i^2)/2.
a(n) = A004255(n), n > 0. - R. J. Mathar, Sep 02 2008
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 4*binomial(n+1,4).
a(n) = (n^4 - 2*n^3 + 3*n^2 + 6*n)/8. - Johannes W. Meijer, Apr 29 2011
G.f.: -x*(4*x^2 - 2*x + 1) / (x-1)^5. - Colin Barker, Apr 29 2013
Extensions
More terms from Joshua Zucker, May 12 2006
Edited by Stefan Steinerberger, Aug 01 2007
Comments