cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101357 Partial sums of A060354.

Original entry on oeis.org

0, 1, 3, 9, 25, 60, 126, 238, 414, 675, 1045, 1551, 2223, 3094, 4200, 5580, 7276, 9333, 11799, 14725, 18165, 22176, 26818, 32154, 38250, 45175, 53001, 61803, 71659, 82650, 94860, 108376, 123288, 139689, 157675, 177345, 198801, 222148, 247494
Offset: 0

Views

Author

Jonathan Vos Post, Dec 25 2004

Keywords

Comments

The Ca4 triangle sums of A139600 are given by the terms of this sequence. For the definitions of the Ca4 and other triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011

Crossrefs

Programs

  • Magma
    [(n^4-2*n^3+3*n^2+6*n)/8: n in [0..40]]; // Vincenzo Librandi, Aug 06 2011
    
  • Mathematica
    Table[Sum[(i*(i - 2)^2 + i^2)/2, {i, 0, n}], {n, 0, 38}]
    Accumulate[Table[(n (n-2)^2+n^2)/2,{n,0,50}]] (* Harvey P. Dale, Aug 05 2011 *)
  • PARI
    a(n)=(n^4-2*n^3+3*n^2+6*n)/8 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = Sum_{i=0..n} (i(i-2)^2 + i^2)/2.
a(n) = A004255(n), n > 0. - R. J. Mathar, Sep 02 2008
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 4*binomial(n+1,4).
a(n) = (n^4 - 2*n^3 + 3*n^2 + 6*n)/8. - Johannes W. Meijer, Apr 29 2011
G.f.: -x*(4*x^2 - 2*x + 1) / (x-1)^5. - Colin Barker, Apr 29 2013

Extensions

More terms from Joshua Zucker, May 12 2006
Edited by Stefan Steinerberger, Aug 01 2007