cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A139600 Square array T(n,k) = n*(k-1)*k/2+k, of nonnegative numbers together with polygonal numbers, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 5, 9, 10, 5, 0, 1, 6, 12, 16, 15, 6, 0, 1, 7, 15, 22, 25, 21, 7, 0, 1, 8, 18, 28, 35, 36, 28, 8, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)*(k-1)*k/2 + k, where P(n,k) is the k-th n-gonal number.
The triangle sums, see A180662 for their definitions, link this square array read by antidiagonals with twelve different sequences, see the crossrefs. Most triangle sums are linear sums of shifted combinations of a sequence, see e.g. A189374. - Johannes W. Meijer, Apr 29 2011

Examples

			The square array of nonnegatives together with polygonal numbers begins:
=========================================================
....................... A   A   .   .   A    A    A    A
....................... 0   0   .   .   0    0    1    1
....................... 0   0   .   .   1    1    3    3
....................... 0   0   .   .   6    7    9    9
....................... 0   0   .   .   9    3    6    6
....................... 0   1   .   .   5    2    0    0
....................... 4   2   .   .   7    9    6    7
=========================================================
Nonnegatives . A001477: 0,  1,  2,  3,  4,   5,   6,   7, ...
Triangulars .. A000217: 0,  1,  3,  6, 10,  15,  21,  28, ...
Squares ...... A000290: 0,  1,  4,  9, 16,  25,  36,  49, ...
Pentagonals .. A000326: 0,  1,  5, 12, 22,  35,  51,  70, ...
Hexagonals ... A000384: 0,  1,  6, 15, 28,  45,  66,  91, ...
Heptagonals .. A000566: 0,  1,  7, 18, 34,  55,  81, 112, ...
Octagonals ... A000567: 0,  1,  8, 21, 40,  65,  96, 133, ...
9-gonals ..... A001106: 0,  1,  9, 24, 46,  75, 111, 154, ...
10-gonals .... A001107: 0,  1, 10, 27, 52,  85, 126, 175, ...
11-gonals .... A051682: 0,  1, 11, 30, 58,  95, 141, 196, ...
12-gonals .... A051624: 0,  1, 12, 33, 64, 105, 156, 217, ...
...
=========================================================
The column with the numbers 2, 3, 4, 5, 6, ... is formed by the numbers > 1 of A000027. The column with the numbers 3, 6, 9, 12, 15, ... is formed by the positive members of A008585.
		

Crossrefs

A formal extension negative n is in A326728.
Triangle sums (see the comments): A055795 (Row1), A080956 (Row2; terms doubled), A096338 (Kn11, Kn12, Kn13, Fi1, Ze1), A002624 (Kn21, Kn22, Kn23, Fi2, Ze2), A000332 (Kn3, Ca3, Gi3), A134393 (Kn4), A189374 (Ca1, Ze3), A011779 (Ca2, Ze4), A101357 (Ca4), A189375 (Gi1), A189376 (Gi2), A006484 (Gi4). - Johannes W. Meijer, Apr 29 2011
Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*(n*(k-1)+2)/2 >;
    A139600:= func< n,k | T(n-k, k) >;
    [A139600(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Maple
    T:= (n, k)-> n*(k-1)*k/2+k:
    seq(seq(T(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Oct 14 2018
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[T[n - k - 1, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • Python
    def A139600Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield x
            x, y = x + y + n, y + n
    for n in range(8):
        R = A139600Row(n)
        print([next(R) for  in range(11)]) # _Peter Luschny, Aug 04 2019
    
  • SageMath
    def T(n,k): return k*(n*(k-1)+2)/2
    def A139600(n,k): return T(n-k, k)
    flatten([[A139600(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = n*(k-1)*k/2+k.
T(n,k) = A057145(n+2,k). - R. J. Mathar, Jul 28 2016
From Stefano Spezia, Apr 12 2024: (Start)
G.f.: y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + x*y)/2. (End)

Extensions

Edited by Omar E. Pol, Jan 05 2009

A100119 a(n) = n-th centered n-gonal number.

Original entry on oeis.org

1, 2, 7, 19, 41, 76, 127, 197, 289, 406, 551, 727, 937, 1184, 1471, 1801, 2177, 2602, 3079, 3611, 4201, 4852, 5567, 6349, 7201, 8126, 9127, 10207, 11369, 12616, 13951, 15377, 16897, 18514, 20231, 22051, 23977, 26012, 28159, 30421, 32801, 35302
Offset: 0

Views

Author

Jonathan Vos Post, Dec 26 2004

Keywords

Comments

a(n) is n times the n-th triangular number plus 1. - Thomas M. Green, Nov 16 2009
From Gary W. Adamson, Jul 31 2010: (Start)
Equals (1, 2, 3, 4, ...) convolved with (1, 0, 4, 7, 10, 13, ...).
Example: a(5) = 76 = (6, 5, 4, 3, 2, 1) dot (1, 0, 4, 7, 10, 13) = (6 + 0 + 16 + 21 + 20 + 13). (End)

Examples

			a(2) = 2*3 + 1 = 7, a(3) = 3*6 + 1 = 19, a(4) = 4*10 + 1 = 41. - _Thomas M. Green_, Nov 16 2009
		

Crossrefs

See also A101357 (Cumulative sums of the n-th n-gonal numbers).
A diagonal of A101321.

Programs

Formula

a(n) = 1 + n*(n + n^2)/2 = 1 + (1/2)*n^2 + (1/2) * n^3 = 1 + mean(n^2, n^3). - Joshua Zucker, May 03 2006
Equals A002411(n) + 1. - Olivier Gérard, Jun 20 2007
G.f.: (1 - 2*x + 5*x^2 - x^3) / (x-1)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 25 2012
a(n) = (A098547(n)+1)/2. - Richard Turk, Jul 18 2017
a(n) = A060354(n+2) - A000290(n+1) = A006003(n+1) - A005563(n) and for n>0 A005920(n) - A068601(n+1). - Bruce J. Nicholson, Jun 23 2018

Extensions

Corrected and extended by Joshua Zucker, May 03 2006

A130218 Partial sums of A100119. Sum of first n of the n-th centered n-gonal numbers.

Original entry on oeis.org

1, 3, 10, 29, 70, 146, 273, 470, 759, 1165, 1716, 2443, 3380, 4564, 6035, 7836, 10013, 12615, 15694, 19305, 23506, 28358, 33925, 40274, 47475, 55601, 64728, 74935, 86304, 98920, 112871, 128248, 145145, 163659, 183890, 205941, 229918, 255930
Offset: 1

Views

Author

Jonathan Vos Post, Aug 04 2007

Keywords

Comments

This is to n-th centered n-gonal numbers (A100119) as A101357 is to n-th n-gonal numbers (A060354). a(2) = 3 and a(4) = 29 are primes. a(39) = 284089 = 13^2 * 41^2.

Examples

			a(41) = 1 + 2 + 7 + 19 + 41 + 76 + 127 + 197 + 289 + 406 + 551 + 727 + 937 + 1184 + 1471 + 1801 + 2177 + 2602 + 3079 + 3611 + 4201 + 4852 + 5567 + 6349 + 7201 + 8126 + 9127 + 10207 + 11369 + 12616 + 13951 + 15377 + 16897 + 18514 + 20231 + 22051 + 23977 + 26012 + 28159 + 30421 + 32801 + 35302 = 382613.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,3,10,29,70},40] (* Harvey P. Dale, Jun 02 2018 *)

Formula

a(n) = (n*(26-3*n-2*n^2+3*n^3))/24. G.f.: x*(x^3-5*x^2+2*x-1) / (x-1)^5. - Colin Barker, Apr 29 2013
Showing 1-3 of 3 results.