cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101362 a(n) = (n+1)*n^4.

Original entry on oeis.org

0, 2, 48, 324, 1280, 3750, 9072, 19208, 36864, 65610, 110000, 175692, 269568, 399854, 576240, 810000, 1114112, 1503378, 1994544, 2606420, 3360000, 4278582, 5387888, 6716184, 8294400, 10156250, 12338352, 14880348, 17825024, 21218430, 25110000, 29552672
Offset: 0

Views

Author

Jonathan Vos Post, Dec 25 2004

Keywords

Comments

For n>=4, a(n-1) is equal to the number of functions f:{1,2,3,4,5}->{1,2,...,n} such that for fixed, different x_1, x_2, x_3, x_4 in {1,2,3,4,5} and fixed y_1, y_2, y_3, y_ 4 in {1,2,...n} we have f(x_i)<>y_i, (i=1,2,3,4). - Milan Janjic, May 13 2007
Pierce expansion of the constant 1 - Sum_{k >= 1} (-1)^(k+1)*k^4/k!^5 = 0.48961 54584 28443 62043 ... = 1/2 - 1/(2*48) + 1/(2*48*324) - .... - Peter Bala, Feb 01 2015

Examples

			a(5) = (5+1)*5^4 = 3750 = 2 * 3 * 5^4, the sum of the divisors of which is 30008.
a(7) = 8*7^4 = 19208 = 2^3 * 7^4 = 98^2 + 98^2.
a(8) = 9*8^4 = 36864 = 2^12*3^2 = 192^2.
a(9) = 10*9^4 = 65610 = 2*3^8*5 = 243^2 + 81^2.
a(10) = 11*10^4 = 110000 = 2^4*5^4*11 = 300^2 + 100^2 + 100^2.
		

Crossrefs

Cf. A019583.

Programs

  • Magma
    [n^4+n^5: n in [0..40]]; // Vincenzo Librandi, Aug 15 2016
  • Maple
    a:= n-> (n+1)*n^4: seq(a(n), n=0..35);
  • Mathematica
    Table[(n + 1)*n^4, {n, 0, 30}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,2,48,324,1280,3750},40] (* Harvey P. Dale, Jun 10 2019 *)

Formula

a(n) + 6*Sum_{i=1..n} i^3 + 4*Sum_{i=1..n} i^2 + Sum_{i=1..n} i = 5*Sum_{i=1..n} i^4.
G.f.: 2*x*(8*x^3+33*x^2+18*x+1) / (x-1)^6. - Colin Barker, May 06 2013
Sum_{n>=1} 1/a(n) = 0.5252003... = Pi^2/6+Pi^4/90-Zeta(3)-1. - R. J. Mathar, Oct 18 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2*log(2) + Pi^2/12 - 3*zeta(3)/4 + 7*Pi^4/720. - Amiram Eldar, Nov 05 2020

Extensions

Corrected and extended by Ray Chandler, Dec 26 2004