A101362 a(n) = (n+1)*n^4.
0, 2, 48, 324, 1280, 3750, 9072, 19208, 36864, 65610, 110000, 175692, 269568, 399854, 576240, 810000, 1114112, 1503378, 1994544, 2606420, 3360000, 4278582, 5387888, 6716184, 8294400, 10156250, 12338352, 14880348, 17825024, 21218430, 25110000, 29552672
Offset: 0
Examples
a(5) = (5+1)*5^4 = 3750 = 2 * 3 * 5^4, the sum of the divisors of which is 30008. a(7) = 8*7^4 = 19208 = 2^3 * 7^4 = 98^2 + 98^2. a(8) = 9*8^4 = 36864 = 2^12*3^2 = 192^2. a(9) = 10*9^4 = 65610 = 2*3^8*5 = 243^2 + 81^2. a(10) = 11*10^4 = 110000 = 2^4*5^4*11 = 300^2 + 100^2 + 100^2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Katherine Kanim, Proof without Words: The Sum of Cubes: An Extension of Archimedes' Sum of Squares, Mathematics Magazine, Vol. 77, No. 4 (2004), pp. 298-299.
- Eric Weisstein's World of Mathematics, Pierce Expansion.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A019583.
Programs
-
Magma
[n^4+n^5: n in [0..40]]; // Vincenzo Librandi, Aug 15 2016
-
Maple
a:= n-> (n+1)*n^4: seq(a(n), n=0..35);
-
Mathematica
Table[(n + 1)*n^4, {n, 0, 30}] LinearRecurrence[{6,-15,20,-15,6,-1},{0,2,48,324,1280,3750},40] (* Harvey P. Dale, Jun 10 2019 *)
Formula
a(n) + 6*Sum_{i=1..n} i^3 + 4*Sum_{i=1..n} i^2 + Sum_{i=1..n} i = 5*Sum_{i=1..n} i^4.
G.f.: 2*x*(8*x^3+33*x^2+18*x+1) / (x-1)^6. - Colin Barker, May 06 2013
Sum_{n>=1} 1/a(n) = 0.5252003... = Pi^2/6+Pi^4/90-Zeta(3)-1. - R. J. Mathar, Oct 18 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2*log(2) + Pi^2/12 - 3*zeta(3)/4 + 7*Pi^4/720. - Amiram Eldar, Nov 05 2020
Extensions
Corrected and extended by Ray Chandler, Dec 26 2004
Comments