cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A007678 Number of regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

0, 0, 1, 4, 11, 24, 50, 80, 154, 220, 375, 444, 781, 952, 1456, 1696, 2500, 2466, 4029, 4500, 6175, 6820, 9086, 9024, 12926, 13988, 17875, 19180, 24129, 21480, 31900, 33856, 41416, 43792, 52921, 52956, 66675, 69996, 82954, 86800, 102050, 97734, 124271, 129404, 149941
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

Comments

This sequence and A006533 are two equivalent ways of presenting the same sequence.
A quasipolynomial of order 2520. - Charles R Greathouse IV, Jan 15 2013
Also the circuit rank of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
This sequence only counts polygons, in contrast to A006533 which also counts the n segments of the circumscribed circle delimited by the edges of the regular n-gon. Therefore a(n) = A006533(n) - n. See also A006561 which counts the intersection points, and A350000 which considers iterated "cutting along diagonals". - M. F. Hasler, Dec 13 2021
The Petrie polygon orthographic projection of a regular n-simplex is a regular (n+1)-gon with all diagonals drawn. Hence a(n+1) is the number of regions in the Petrie polygon of a regular n-simplex. - Mohammed Yaseen, Nov 05 2022

References

  • Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
  • C. A. Pickover, The Mathematics of Oz, Problem 58 "The Beauty of Polygon Slicing", Cambridge University Press, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001006, A054726, A006533, A006561, A006600, A007569 (number of vertices), A006522, A135565 (number of line segments).
A062361 gives number of triangles, A331450 and A331451 give distribution of polygons by number of sides.
A333654, A335614, A335646, A337330 give the number of internal n-gon to k-gon contacts for n>=3, k>=n.
A187781 gives number of distinct regions.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; R[n_]:=If[n<3, 0, (n^4-6n^3+23n^2-42n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n]; Table[R[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    /* Only for odd n > 3, not suitable for other values of n! */ { a(n)=local(nr,x,fn,cn,fn2); nr=0; fn=floor(n/2); cn=ceil(n/2); fn2=(fn-1)^2-1; nr=fn2*n+fn+(n-2)*fn+cn; x=(n-5)/2; if (x>0,nr+=x*(x+1)*(2*x+1)/6*n); nr; } \\ Jon Perry, Jul 08 2003
    
  • PARI
    apply( {A007678(n)=if(n%2, (((n-6)*n+23)*n-42)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 31, 40) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
    
  • Python
    def d(n,m): return not n % m
    def A007678(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 84*n)//48 + 1 # Chai Wah Wu, Mar 08 2021

Formula

For odd n > 3, a(n) = sumstep {i=5, n, 2, (i-2)*floor(n/2)+(i-4)*ceiling(n/2)+1} + x*(x+1)*(2*x+1)/6*n), where x = (n-5)/2. Simplifying the floor/ceiling components gives the PARI code below. - Jon Perry, Jul 08 2003
For odd n, a(n) = (24 - 42*n + 23*n^2 - 6*n^3 + n^4)/24. - Graeme McRae, Dec 24 2004
a(n) = A006533(n) - n. - T. D. Noe, Dec 23 2006
For odd n, binomial transform of [1, 10, 29, 36, 16, 0, 0, 0, ...] = [1, 11, 50, 154, ...]. - Gary W. Adamson, Aug 02 2011
a(n) = A135565(n) - A007569(n) + 1. - Max Alekseyev
See the Mma code in A006533 for the explicit Poonen-Rubenstein formula that holds for all n. - N. J. A. Sloane, Jan 23 2020

Extensions

More terms from Graeme McRae, Dec 26 2004
a(1) = a(2) = 0 prepended by Max Alekseyev, Dec 01 2011

A007569 Number of nodes in regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 2, 3, 5, 10, 19, 42, 57, 135, 171, 341, 313, 728, 771, 1380, 1393, 2397, 1855, 3895, 3861, 6006, 5963, 8878, 7321, 12675, 12507, 17577, 17277, 23780, 16831, 31496, 30945, 40953, 40291, 52395, 47017, 66082, 65019, 82290, 80921, 101311, 84883, 123453, 121485
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

Comments

I.e., vertex count of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
Also the circumference of the n-polygon diagonal intersection graph (since these graphs are Hamiltonian). - Eric W. Weisstein, Mar 08 2018
a(n) = n + sum of row n of triangle A292105. - N. J. A. Sloane, Jun 01 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006561, A007678 (regions), A292105.
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.

Programs

  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; Int[n_]:=If[n<4, n, n + Binomial[n,4] + del[2,n](-5n^3+45n^2-70n+24)/24 - del[4,n](3n/2) + del[6,n](-45n^2+262n)/6 + del[12,n]*42n + del[18,n]*60n + del[24,n]*35n - del[30,n]*38n - del[42,n]*82n - del[60,n]*330n - del[84,n]*144n - del[90,n]*96n - del[120,n]*144n - del[210,n]*96n]; Table[Int[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    apply( {A007569(n)=A006561(n)+n}, [1..44]) \\ M. F. Hasler, Aug 06 2021
  • Python
    def d(n,m): return not n % m
    def A007569(n): return 2 if n == 2 else n*(42*d(n,12) - 144*d(n,120) + 60*d(n,18) - 96*d(n,210) + 35*d(n,24)- 38*d(n,30) - 82*d(n,42) - 330*d(n,60) - 144*d(n,84) - 96*d(n,90)) + (n**4 - 6*n**3 + 11*n**2 + 18*n -d(n,2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n,4)*n - 4*d(n,6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021
    

Formula

a(n) = A006561(n)+n. - T. D. Noe, Dec 23 2006
If n is odd, a(n) = binomial(n,4) + n. - N. J. A. Sloane, Aug 30 2021

A006561 Number of intersections of diagonals in the interior of a regular n-gon.

Original entry on oeis.org

0, 0, 0, 1, 5, 13, 35, 49, 126, 161, 330, 301, 715, 757, 1365, 1377, 2380, 1837, 3876, 3841, 5985, 5941, 8855, 7297, 12650, 12481, 17550, 17249, 23751, 16801, 31465, 30913, 40920, 40257, 52360, 46981, 66045, 64981, 82251, 80881, 101270, 84841, 123410, 121441
Offset: 1

Views

Author

N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
See also A101363, A292104, A292105.
See A290447 for an analogous problem on a line.

Programs

  • Maple
    delta:=(m,n) -> if (n mod m) = 0 then 1 else 0; fi;
    f:=proc(n) global delta;
    if n <= 2 then 0 else \
    binomial(n,4)  \
    + (-5*n^3 + 45*n^2 - 70*n + 24)*delta(2,n)/24 \
    - (3*n/2)*delta(4,n) \
    + (-45*n^2 + 262*n)*delta(6,n)/6  \
    + 42*n*delta(12,n) \
    + 60*n*delta(18,n) \
    + 35*n*delta(24,n) \
    - 38*n*delta(30,n) \
    - 82*n*delta(42,n) \
    - 330*n*delta(60,n) \
    - 144*n*delta(84,n) \
    - 96*n*delta(90,n) \
    - 144*n*delta(120,n) \
    - 96*n*delta(210,n); fi; end;
    [seq(f(n),n=1..100)]; # N. J. A. Sloane, Aug 09 2017
  • Mathematica
    del[m_,n_]:=If[Mod[n,m]==0,1,0]; Int[n_]:=If[n<4, 0, Binomial[n,4] + del[2,n](-5n^3+45n^2-70n+24)/24 - del[4,n](3n/2) + del[6,n](-45n^2+262n)/6 + del[12,n]*42n + del[18,n]*60n + del[24,n]*35n - del[30,n]*38n - del[42,n]*82n - del[60,n]*330n - del[84,n]*144n - del[90,n]*96n - del[120,n]*144n - del[210,n]*96n]; Table[Int[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
  • PARI
    apply( {A006561(n)=binomial(n,4)+if(n%2==0, (n>2) + (-5*n^2+45*n-70)*n/24 + vecsum([t[2] | t<-[4,6,12,18,24,30,42,60,84,90,120,210;-3/2,(262-45*n)/6,42,60,35,-38,-82,-330,-144,-96,-144,-96], n%t[1]==0])*n)}, [1..44]) \\ M. F. Hasler, Aug 23 2017, edited Aug 06 2021
    
  • Python
    def d(n,m): return not n % m
    def A006561(n): return 0 if n == 2 else n*(42*d(n,12) - 144*d(n,120) + 60*d(n,18) - 96*d(n,210) + 35*d(n,24)- 38*d(n,30) - 82*d(n,42) - 330*d(n,60) - 144*d(n,84) - 96*d(n,90)) + (n**4 - 6*n**3 + 11*n**2 - 6*n -d(n,2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n,4)*n - 4*d(n,6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021

Formula

Let delta(m,n) = 1 if m divides n, otherwise 0.
For n >= 3, a(n) = binomial(n,4) + (-5*n^3 + 45*n^2 - 70*n + 24)*delta(2,n)/24
- (3*n/2)*delta(4,n) + (-45*n^2 + 262*n)*delta(6,n)/6 + 42*n*delta(12,n)
+ 60*n*delta(18,n) + 35*n*delta(24,n) - 38*n*delta(30,n)
- 82*n*delta(42,n) - 330*n*delta(60,n) - 144*n*delta(84,n)
- 96*n*delta(90,n) - 144*n*delta(120,n) - 96*n*delta(210,n). [Poonen and Rubinstein, Theorem 1] - N. J. A. Sloane, Aug 09 2017
For odd n, a(n) = binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24, see A053126. For even n, use this formula, but then subtract 2 for every 3-crossing, subtract 5 for every 4-crossing, subtract 9 for every 5-crossing, etc. The number to be subtracted for a d-crossing is (d-1)*(d-2)/2. - Graeme McRae, Dec 26 2004
a(n) = A007569(n) - n. - T. D. Noe, Dec 23 2006
a(2n+5) = A053126(n+4). - Philippe Deléham, Jun 07 2013

A331450 Irregular triangle read by rows: Take a regular n-sided polygon (n>=3) with all diagonals drawn, as in A007678. Then T(n,k) = number of k-sided polygons in that figure for k = 3, 4, ..., max_k.

Original entry on oeis.org

1, 4, 10, 0, 1, 18, 6, 35, 7, 7, 0, 1, 56, 24, 90, 36, 18, 9, 0, 0, 1, 120, 90, 10, 176, 132, 44, 22, 276, 168, 377, 234, 117, 39, 0, 13, 0, 0, 0, 0, 1, 476, 378, 98, 585, 600, 150, 105, 15, 0, 0, 0, 0, 0, 0, 0, 1, 848, 672, 128, 48, 1054, 901, 357, 136, 17, 34, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1404, 954, 72, 18, 18, 1653, 1444, 646, 190, 57, 38, 2200, 1580, 580, 120, 0, 20, 2268, 2520, 903, 462, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 3

Views

Author

Keywords

Comments

Computed by Scott R. Shannon, Jan 24 2020
See A331451 for a version of this triangle giving the counts for k = 3 through n.
Mitosis of convex polygons, by Scott R. Shannon and N. J. A. Sloane, Dec 13 2021 (Start)
Borrowing a term from biology, we can think of this process as the "mitosis" of a regular polygon. Row 6 of this triangle shows that a regular hexagon "mitoses" into 18 triangles and 4 quadrilaterals, which we denote by 3^18 4^6.
What if we start with a convex but not necessarily regular n-gon? Let M(n) denote the number of different decompositions into cells that can be obtained. For n = 3, 4, and 5 there is only one possibility. For n = 6 there are two possibilities, 3^18 4^6 and 3^19 4^3 5^3. For n = 7 there are at least 11 possibilities. So the sequence M(n) for n >= 3 begins 1, 1, 1, 2, >=11, ...
The links below give further information. See also A350000. (End)

Examples

			A hexagon with all diagonals drawn contains 18 triangles and 6 quadrilaterals, so row 6 is [18, 6].
Triangle begins:
  1,
  4,
  10, 0, 1,
  18, 6,
  35, 7, 7, 0, 1,
  56, 24,
  90, 36, 18, 9, 0, 0, 1,
  120, 90, 10,
  176, 132, 44, 22, 0, 0, 0, 0, 1
  276, 168,
  377, 234, 117, 39, 0, 13, 0, 0, 0, 0, 1,
  476, 378, 98,
  585, 600, 150, 105, 15, 0, 0, 0, 0, 0, 0, 0, 1,
  848, 672, 128, 48,
  1054, 901, 357, 136, 17, 34, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  1404, 954, 72, 18, 18,
  1653, 1444, 646, 190, 57, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
  2200, 1580, 580, 120, 0, 20,
  2268, 2520, 903, 462, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  2992, 2860, 814, 66, 44, 44,
  3749, 2990, 1564, 644, 115, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  ...
The row sums are A007678, the first column is A062361.
		

Crossrefs

Extensions

Added "regular" to definition. - N. J. A. Sloane, Mar 06 2021

A062361 Number of triangular regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 4, 10, 18, 35, 56, 90, 120, 176, 276, 377, 476, 585, 848, 1054, 1404, 1653, 2200, 2268, 2992, 3749, 4416, 5000, 6292, 6777, 8316, 9222, 11670, 11501, 14368, 15840, 18598, 19705, 24444, 25012, 28842, 30966, 36000, 39278, 45318, 46999, 53900
Offset: 3

Views

Author

Sascha Kurz, Jul 07 2001

Keywords

Comments

Also the number of 3-cycles and maximum cliques in the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08-09 2018

Examples

			a(4) = 4 because in a quadrilateral the diagonals cross to make four triangles.
		

Crossrefs

Cf. A300552 (4-cycles), A300553 (5-cycles), A300554 (6-cycles).

Formula

a(n) = n * A067162(n).

A067151 Number of regions in regular n-gon which are quadrilaterals (4-gons) when all its diagonals are drawn.

Original entry on oeis.org

0, 0, 6, 7, 24, 36, 90, 132, 168, 234, 378, 600, 672, 901, 954, 1444, 1580, 2520, 2860, 2990, 3696, 4800, 5070, 6750, 7644, 9309, 7920, 12927, 12896, 15576, 16898, 20475, 18684, 25382, 27246, 30966, 32760, 37064, 37170, 45838, 47300, 55350, 60996, 69231, 66864, 80507, 87550, 98124, 103272
Offset: 4

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(6)=6 because the 6 regions around the center are quadrilaterals.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Formula

Conjecture: a(n) ~ c * n^4. Is c = 1/64 ? - Bill McEachen, Mar 03 2024

Extensions

Title clarified, a(47) and above by Scott R. Shannon, Dec 04 2021

A292104 Number of interior points that are the intersections of exactly two chords in the configuration A006561(n).

Original entry on oeis.org

0, 0, 0, 1, 5, 12, 35, 40, 126, 140, 330, 228, 715, 644, 1365, 1168, 2380, 1512, 3876, 3360, 5985, 5280, 8855, 6144, 12650, 11284, 17550, 15680, 23751, 13800, 31465, 28448, 40920, 37264, 52360, 42444, 66045, 60648, 82251, 75720, 101270, 75012, 123410, 114400, 148995, 138644, 178365, 152064
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2017

Keywords

Crossrefs

Cf. A006561. Column k=2 of A292105.

Extensions

a(31)-a(48) from Scott R. Shannon, Mar 04 2022

A292105 Irregular triangle read by rows: T(n,k) = the number of interior points that are the intersections of exactly k chords in the configuration A006561(n) (n >= 1, k >= 1).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 5, 0, 12, 1, 0, 35, 0, 40, 8, 1, 0, 126, 0, 140, 20, 0, 1, 0, 330, 0, 228, 60, 12, 0, 1, 0, 715, 0, 644, 112, 0, 0, 0, 1, 0, 1365, 0, 1168, 208, 0, 0, 0, 0, 1, 0, 2380, 0, 1512, 216, 54, 54, 0, 0, 0, 1, 0, 3876, 0, 3360, 480, 0, 0, 0, 0, 0, 0, 1, 0, 5985
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2017

Keywords

Examples

			Triangle begins:
  0;
  0;
  0;
  0,   1;
  0,   5;
  0,  12,  1;
  0,  35;
  0,  40,  8,  1;
  0, 126;
  0, 140, 20,  0, 1;
  0, 330;
  0, 228, 60, 12, 0, 1;
See the attached text file for the first 100 rows.
		

Crossrefs

Columns give A292104, A101363 (2n-gon), A101364, A101365.
Row sums give A006561.
Cf. A335102.

Extensions

a(27) and beyond by Scott R. Shannon, May 15 2022

A101364 In the interior of a regular n-gon with all diagonals drawn, the number of points where exactly four diagonals intersect.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 12, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 264, 0, 0, 0, 0, 0, 420, 0, 0, 0, 0, 0, 396, 0, 0, 0, 0, 0, 1134, 0, 0, 0, 0, 0, 1200, 0, 0, 0, 0, 0, 1296, 0, 0, 0, 0, 0, 3780, 0, 0, 0, 0, 0, 2310, 0, 0, 0, 0, 0, 2520, 0, 0, 0, 0, 0, 3276, 0, 0, 0, 0, 0, 3612, 0, 0, 0, 0, 0, 4050
Offset: 3

Views

Author

Graeme McRae, Dec 26 2004, revised Feb 23 2008

Keywords

Comments

When n is odd, there are no intersections in the interior of an n-gon where more than 2 diagonals meet.
When n is not a multiple of 6, there are no intersections in the interior of an n-gon where more than 3 diagonals meet except the center.
When n is not a multiple of 30, there are no intersections in the interior of an n-gon where more than 5 diagonals meet except the center.
I checked the following conjecture up to n=210: "An n-gon with n=30k has 5n points where 6 or 7 diagonals meet and no interior point other than the center where more than 7 diagonals meet; If k is odd, then 6 diagonals meet in each of 4n points and 7 diagonals meet in each of n points; If k is even, then no groups of exactly 6 diagonals meet in a point, while exactly 7 diagonals meet in each of 5n points (all points interior excluding the center)."

Examples

			a(18)=54 because inside a regular 18-gon there are 54 points where exactly four diagonals intersect.
		

Crossrefs

A column of A292105.
Cf. A000332: C(n, 4) = number of intersection points of diagonals of convex n-gon.
Cf. A006561: number of intersections of diagonals in the interior of regular n-gon.
Cf. A101363: number of 3-way intersections in the interior of a regular 2n-gon.
Cf. A101365: number of 5-way intersections in the interior of a regular n-gon.
Cf. A137938: number of 4-way intersections in the interior of a regular 6n-gon.
Cf. A137939: number of 5-way intersections in the interior of a regular 6n-gon.

A101365 In the interior of a regular n-gon with all diagonals drawn, the number of points where exactly five diagonals intersect.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 180, 0, 0, 0, 0, 0, 216, 0, 0, 0, 0, 0, 546, 0, 0, 0, 0, 0, 336, 0, 0, 0, 0, 0, 648, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 990, 0, 0, 0, 0, 0, 936, 0, 0, 0, 0, 0, 1404, 0, 0, 0, 0, 0, 2352, 0, 0, 0, 0, 0, 1890, 0, 0, 0, 0
Offset: 3

Views

Author

Graeme McRae, Dec 26 2004, revised Feb 23 2008

Keywords

Comments

When n is odd, there are no intersections in the interior of an n-gon where more than 2 diagonals meet.
When n is not a multiple of 6, there are no intersections in the interior of an n-gon where more than 3 diagonals meet except the center.
When n is not a multiple of 30, there are no intersections in the interior of an n-gon where more than 5 diagonals meet except the center.
I checked the following conjecture up to n=210: "An n-gon with n=30k has 5n points where 6 or 7 diagonals meet and no interior point other than the center where more than 7 diagonals meet; If k is odd, then 6 diagonals meet in each of 4n points and 7 diagonals meet in each of n points; If k is even, then no groups of exactly 6 diagonals meet in a point, while exactly 7 diagonals meet in each of 5n points (all points interior excluding the center)."

Examples

			a(18)=54 because inside a regular 18-gon there are 54 points (3 on each radius) where exactly five diagonals intersect.
		

Crossrefs

A column of A292105.
Cf. A000332: C(n, 4) = number of intersection points of diagonals of convex n-gon.
Cf. A006561: number of intersections of diagonals in the interior of regular n-gon.
Cf. A101363: number of 3-way intersections in the interior of a regular 2n-gon.
Cf. A101364: number of 4-way intersections in the interior of a regular n-gon.
Cf. A137938: number of 4-way intersections in the interior of a regular 6n-gon.
Cf. A137939: number of 5-way intersections in the interior of a regular 6n-gon.
Showing 1-10 of 13 results. Next