cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A101866 Array read by antidiagonals: Arnoux's product T(n,k) = n * k = nk + ceiling(phi n) ceiling(phi k), where phi = (1 + sqrt(5))/2 ; m, n >= 1.

Original entry on oeis.org

5, 10, 10, 13, 20, 13, 18, 26, 26, 18, 23, 36, 34, 36, 23, 26, 46, 47, 47, 46, 26, 31, 52, 60, 65, 60, 52, 31, 34, 62, 68, 83, 83, 68, 62, 34, 39, 68, 81, 94, 106, 94, 81, 68, 39, 44, 78, 89, 112, 120, 120, 112, 89, 78, 44, 47, 88, 102, 123, 143, 136, 143, 123, 102, 88, 47, 52
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Comments

Row 1 / column 1 (given in A101868) = positions of 1 in A188009, viz.,
A188009 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ...), A101868 = (5, 10, 13, 18, 23, 26, 31, 34, 39, 44, 47, 52, 57, ...). - Clark Kimberling and John W. Layman, Mar 19 2011, corrected and edited by M. F. Hasler, Oct 12 2017
By definition, the array is symmetric, so row n = column n. Row 1 is essentially the same as A188434: T(n,1) = A101868(n) = A188434(n+1). - M. F. Hasler, Oct 12 2017
This product is commutative but is not associative and does not distribute over addition. - Peter Bala, Aug 13 2022

Examples

			   5 10 13 18  23 ...
  10 20 26 36  46
  13 26 34 47  60
  18 36 47 65  83
  23 46 60 83 106
  ...
		

Crossrefs

Cf. A101858, A101330, A101385, A101633 for similarly defined products.
Main diagonal is A101867.
First 3 rows are A101868, A101869, A101870.
Cf. A001622.

Programs

  • Mathematica
    A101866[n_, k_] := n*k + Ceiling[n*GoldenRatio]*Ceiling[k*GoldenRatio];
    Table[A101866[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)
  • PARI
    T(n, k) = my(phi = (1+sqrt(5))/2); n*k + ceil(phi*n)*ceil(phi*k); \\ Michel Marcus, Mar 29 2016

A101330 Array read by antidiagonals: T(n, k) = Knuth's Fibonacci (or circle) product of n and k ("n o k"), n >= 1, k >= 1.

Original entry on oeis.org

3, 5, 5, 8, 8, 8, 11, 13, 13, 11, 13, 18, 21, 18, 13, 16, 21, 29, 29, 21, 16, 18, 26, 34, 40, 34, 26, 18, 21, 29, 42, 47, 47, 42, 29, 21, 24, 34, 47, 58, 55, 58, 47, 34, 24, 26, 39, 55, 65, 68, 68, 65, 55, 39, 26, 29, 42, 63, 76, 76, 84, 76, 76, 63, 42, 29, 32, 47
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). (The eps(i) are 0 or 1 and no two consecutive eps(i) are both 1.) Then the Fibonacci (or circle) product of n and k is n o k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j} (= T(n,k)).
The Zeckendorf expansion can be written n = Sum_{i=1..k} F(a_i), where a_{i+1} >= a_i + 2. In this formulation, the product becomes: if n = Sum_{i=1..k} F(a_i) and m = Sum_{j=1..l} F(b_j) then n o m = Sum_{i=1..k} Sum_{j=1..l} F(a_i + b_j).
Knuth shows that this multiplication is associative. This is not true if we change the product to n X k = Sum_{i,j} eps(i)*eps(j) Fib_{i+j-2}, see A101646. Of course 1 is not a multiplicative identity here, whereas it is in A101646.
The papers by Arnoux, Grabner et al. and Messaoudi discuss this sequence and generalizations.

Examples

			Array begins:
   3   5   8  11   13   16   18   21   24 ...
   5   8  13  18   21   26   29   34   39 ...
   8  13  21  29   34   42   47   55   63 ...
  11  18  29  40   47   58   65   76   87 ...
  13  21  34  47   55   68   76   89  102 ...
  16  26  42  58   68   84   94  110  126 ...
  18  29  47  65   76   94  105  123  141 ...
  21  34  55  76   89  110  123  144  165 ...
  24  39  63  87  102  126  141  165  189 ...
  ...........................................
		

Crossrefs

See A101646 and A135090 for other versions.
Main diagonal is A101332.
Rows: A026274 (row 1), A101345 (row 2), A101642 (row 3).
Cf. A101385, A101633, A101858 for related definitions of product.

Programs

  • Maple
    h := n -> floor(2*(n + 1)/(sqrt(5) + 3)):  # A060144(n+1)
    T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
    seq(print(seq(T(n, k), k = 1..9)), n = 1..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfp[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[i + j + 2], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *)
    Flatten[ Table[ kfp[i, n - i], {n, 2, 13}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *)
    A101330[n_, k_]:=3*n*k-n*Floor[(k+1)/GoldenRatio^2]-k*Floor[(n+1)/GoldenRatio^2];
    Table[A101330[n-k+1, k], {n, 15}, {k, n}] (* Paolo Xausa, Mar 20 2024 *)

Formula

T(n, k) = 3*n*k - n*floor((k+1)/phi^2) - k*floor((n+1)/phi^2). For proof see link. - Fred Lunnon, May 19 2008
T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024

Extensions

More terms from David Applegate, Jan 26 2005

A101858 Array read by antidiagonals: T(n,k) = Porta-Stolarsky star product T(n,k) = n * k = nk + floor(phi n) floor(phi k) where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

2, 5, 5, 7, 13, 7, 10, 18, 18, 10, 13, 26, 25, 26, 13, 15, 34, 36, 36, 34, 15, 18, 39, 47, 52, 47, 39, 18, 20, 47, 54, 68, 68, 54, 47, 20, 23, 52, 65, 78, 89, 78, 65, 52, 23, 26, 60, 72, 94, 102, 102, 94, 72, 60, 26, 28, 68, 83, 104, 123, 117, 123, 104, 83, 68, 28, 31, 73, 94, 120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Examples

			..2...5...7..10..13..15..18..20..23..26.
..5..13..18..26..34..39..47..52..60..68.
..7..18..25..36..47..54..65..72..83..94.
.10..26..36..52..68..78..94.104.120.136.
.13..34..47..68..89.102.123.136.157.178.
.15..39..54..78.102.117.141.156.180.204.
.18..47..65..94.123.141.170.188.217.246.
.20..52..72.104.136.156.188.208.240.272.
.23..60..83.120.157.180.217.240.277.314.
.26..68..94.136.178.204.246.272.314.356.
		

Crossrefs

See A101330, A101385, A101633, A101866 for related definitions of product.
Main diagonal is A101863.
First 3 rows are A001950, A101864, A101865.
Cf. A001622.

Programs

  • Maple
    A101858 := proc(n,k)
            phi := (1+sqrt(5))/2 ;
            n*k+floor(n*phi)*floor(phi*k) ;
    end proc: # R. J. Mathar, Dec 06 2011
  • Mathematica
    t[n_, k_] := n*k + Floor[n*GoldenRatio] * Floor[GoldenRatio*k]; Table[t[n-k, k], {n, 2, 13}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

A101385 Array read by antidiagonals: T(n,k) = variant of Knuth's Fibonacci (or circle) product of n and k (A101330).

Original entry on oeis.org

3, 8, 8, 21, 34, 21, 24, 144, 144, 24, 55, 152, 987, 152, 55, 58, 610, 1008, 1008, 610, 58, 63, 618, 6765, 1032, 6765, 618, 63, 144, 644, 6786, 6820, 6820, 6786, 644, 144, 147, 2584, 6909, 6844, 75025, 6844, 6909, 2584, 147, 152, 2592, 46368, 6972, 75080
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). The product of n and k is defined here to be Sum_{i,j} eps(i)*eps(j) Fib_{i*j} (= T(n,k)).

Examples

			Array begins:
3 8 21 24 55 ...
8 34 144 152 ...
21 144 987 ...
24 152 ...
55 ...
		

Crossrefs

Cf. A101330, A035517, A014417. Main diagonal is A101633.
First 3 rows give A101643, A101644, A101645.

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfpv[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[(i + 1)(j + 1)], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *)
    Flatten[ Table[ kfpv[i, n - i], {n, 2, 12}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *)

Extensions

More terms from David Applegate, Jan 26 2005
Showing 1-4 of 4 results.