A102050 a(n) = 1 if 10^(2^n)+1 is prime, otherwise smallest prime factor of 10^(2^n)+1.
1, 1, 73, 17, 353, 19841, 1265011073, 257, 10753, 1514497, 1856104284667693057, 106907803649, 458924033, 3635898263938497962802538435084289
Offset: 0
Examples
10^(2^4)+1 = 10000000000000001 = 353*449*641*1409*69857, hence a(4) = 353.
Links
- factordb.com, Status of 10^(2^n)+1.
- Wilfrid Keller, Prime factors of generalized Fermat numbers Fm(10) and complete factoring status
Programs
-
Mathematica
spf[n_]:=Module[{c=10^2^n+1},If[PrimeQ[c],1,FactorInteger[c][[1,1]]]]; Array[spf,15,0] (* Harvey P. Dale, Apr 09 2019 *)
-
PARI
for(k=0,8,fac=factor(10^(2^k)+1);print1(if(matsize(fac)[1]==1,1,fac[1,1]),","))
Formula
If 10^(2^n)+1 is composite, a(n) = A185121(n).
Extensions
a(13) from the Keller link, added by Jeppe Stig Nielsen, Nov 04 2010
Comments