A102113 Iccanobirt numbers (3 of 15): a(n) = a(n-1) + R(a(n-2)) + R(a(n-3)), where R is the digit reversal function A004086.
0, 0, 1, 1, 2, 4, 7, 13, 24, 62, 135, 203, 760, 1593, 1962, 5980, 12622, 16208, 39724, 142606, 265660, 914694, 1587497, 2150478, 10594748, 27283111, 120773124, 216660897, 649176190, 1868619823, 2758358381, 6139199008, 11266906261
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n): a:= proc(n) option remember; `if`(n<3, binomial(n, 2), a(n-1) + R(a(n-2)) + R(a(n-3)) ) end: seq(a(n), n=0..50); # Alois P. Heinz, Jun 18 2014
-
Mathematica
R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=a[n-1]+R[a[n-2]]+R[a[n-3]];Table[a[n], {n, 0, 40}] nxt[{a1_,a2_,a3_}]:={a2,a3,a3+FromDigits[Reverse[IntegerDigits[ a1]]]+ FromDigits[ Reverse[ IntegerDigits[a2]]]}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Oct 17 2012 *) nxt[{a_,b_,c_}]:={b,c,c+IntegerReverse[b]+IntegerReverse[a]}; NestList[ nxt,{0,0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 10 2016 *)
Comments