cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102186 The PDO(n) function (Partitions with Designated summands in which all parts are Odd): the sum of products of multiplicities of parts in all partitions of n into odd parts.

Original entry on oeis.org

1, 1, 2, 4, 5, 8, 12, 16, 22, 32, 42, 56, 76, 98, 128, 168, 213, 272, 348, 436, 548, 688, 852, 1056, 1308, 1603, 1964, 2404, 2920, 3544, 4296, 5176, 6230, 7488, 8958, 10704, 12772, 15182, 18024, 21368, 25254, 29808, 35136, 41308, 48504, 56880, 66552, 77776
Offset: 0

Views

Author

Vladeta Jovovic, Feb 16 2005

Keywords

Examples

			a(8)=22 because in the six partitions of 8 into odd parts, namely, 71,53,5111,3311,311111,11111111, the multiplicities of the parts are (1,1),(1,1),(1,3),(2,2),(1,5),(8) with products 1,1,3,4,5,8, having sum 22.
		

Crossrefs

Cf. A077285 (partitions with designated summands).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-2) +add(b(n-i*j, i-2)*j, j=1..n/i)))
        end:
    a:= n-> b(n, iquo(1+n,2)*2-1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 26 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + Sum[b[n - i*j, i - 2]*j, {j, 1, n/i}]]]; a[n_] := b[n, Quotient[1 + n, 2]*2 - 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
    nmax=60; CoefficientList[Series[Product[(1-x^(4*k)) * (1+x^(3*k)) / ((1-x^k) * (1+x^(6*k))), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
    Table[Total[l = Tally /@ Select[IntegerPartitions@n, VectorQ[#, OddQ] &];
      Table[x = l[[i]]; Product[x[[j, 2]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 47}] (* Robert Price, Jun 08 2020 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^4+A)*eta(x^6+A)^2/ eta(x+A)/eta(x^3+A)/eta(x^12+A), n))} /* Michael Somos, Jul 30 2006 */

Formula

Euler transform of period 12 sequence [1, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 0, ...].
a(n) ~ 5^(1/4) * exp(sqrt(5*n)*Pi/3) / (2^(5/2)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 28 2015
G.f.: Product_{k>=1} (1 + Sum_{j>=1} j * x^(j*(2*k - 1))). - Ilya Gutkovskiy, Nov 06 2019

Extensions

More terms from Emeric Deutsch, Mar 28 2005
Name expanded by N. J. A. Sloane, Nov 21 2015