A102273 Primes p such that Q(sqrt(-21p)) has genus characters chi_{-3} = -1, chi_{-7} = +1.
11, 23, 71, 107, 179, 191, 239, 263, 347, 359, 431, 443, 491, 599, 659, 683, 743, 827, 863, 911, 947, 1019, 1031, 1103, 1163, 1187, 1283, 1367, 1439, 1451, 1499, 1523, 1583, 1607, 1619, 1667, 1787, 1871, 2003, 2027, 2039, 2087
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants of the classgroup of Q(sqrt{dp}) as p varies, Math. Comp. 41 (1983), 711-730.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[p: p in PrimesUpTo(3000) | p mod 84 in [2, 11, 23, 71]]; // Vincenzo Librandi, Jul 19 2012
-
Mathematica
f[x_,y_]:=2*x^2+2*x*y+11*y^2; lst={};Do[Do[p=f[x,y];If[PrimeQ[p],AppendTo[lst,p]],{y,-5!,6!}],{x,-5!,6!}];Take[Union[lst],5! ] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2009 *)
Formula
The primes are congruent to {2, 11, 23, 71} (mod 84). - T. D. Noe, May 02 2008
Comments