A102537 Triangle T(n,k) read by rows: (1/n) * C(2n+k,k-1) * C(n,k); n, k >= 1.
1, 1, 3, 1, 8, 12, 1, 15, 55, 55, 1, 24, 156, 364, 273, 1, 35, 350, 1400, 2380, 1428, 1, 48, 680, 4080, 11628, 15504, 7752, 1, 63, 1197, 9975, 41895, 92169, 100947, 43263, 1, 80, 1960, 21560, 123970, 396704, 708400, 657800, 246675, 1, 99, 3036, 42504
Offset: 1
Examples
Triangle begins 1; 1, 3; 1, 8, 12; 1, 15, 55, 55; 1, 24, 156, 364, 273; 1, 35, 350, 1400, 2380, 1428; 1, 48, 680, 4080, 11628, 15504, 7752; 1, 63, 1197, 9975, 41895, 92169, 100947, 43263; 1, 80, 1960, 21560, 123970, 396704, 708400, 657800, 246675;
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150).
- H. Einziger, Incidence Hopf algebras: Antipodes, forest formulas, and noncrossing partitions, Dissertation (2010), George Washington University.
- J. McCammond, Noncrossing Hypertrees, 2015.
- Jean-Christophe Novelli and Jean-Yves Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Jean-Christophe Novelli and Jean-Yves Thibon, Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partitions and the Farahat-Higman algebra, arXiv:2106.08257 [math.CO], 2021-2022.
- E. Tzanaki, Polygon dissections and some generalizations of cluster complexes, arXiv:math/0501100 [math.CO], 2005.
Crossrefs
Programs
-
Magma
[[1/n * Binomial(2*n+k,k-1) * Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, May 20 2015
-
Mathematica
Table[1/n*Binomial[2 n + k, k - 1] Binomial[n, k], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, May 20 2017 *)
Comments