A102552 a(n) = prime(n) - (prime(n+1) + prime(n-1))/2.
0, -1, 1, -1, 1, -1, -1, 2, -2, 1, 1, -1, -1, 0, 2, -2, 1, 1, -2, 1, -1, -1, 2, 1, -1, 1, -1, -5, 5, -1, 2, -4, 4, -2, 0, 1, -1, 0, 2, -4, 4, -1, 1, -5, 0, 4, 1, -1, -1, 2, -4, 2, 0, 0, 2, -2, 1, 1, -4, -2, 5, 1, -1, -5, 4, -2, 4, -1, -1, -1, 1, 0, 1, -1, -1, 2, -2, -1, 4, -4, 4, -2, 1, -1, -1, 2, 1, -1, -4, 2, 2, -2, 2, -1, -3, 5, -8, 6, -2, 2, 0, 2, -2
Offset: 3
Keywords
Examples
a(6)=-1 because 13-(17+11)/2=-1.
References
- Eric Weisstein, CRC Concise Encyclopedia of Mathematics, 1998, page 1321.
Links
- G. C. Greubel, Table of n, a(n) for n = 3..10000
Programs
-
Magma
A102552:= func< n | (2*NthPrime(n)-NthPrime(n+1)-NthPrime(n-1))/2 >; [A102552(n): n in [3..120]]; // G. C. Greubel, Feb 02 2025
-
Maple
a:=n->ithprime(n)-(ithprime(n+1)+ithprime(n-1))/2: seq(a(n),n=3..95); # Emeric Deutsch, Mar 02 2005
-
Mathematica
f[n_] := Prime[n] - (Prime[n - 1] + Prime[n + 1])/2; Table[f[n], {n, 3, 107}] (* Robert G. Wilson v, Sep 25 2006 *) #[[2]]-(#[[1]]+#[[3]])/2&/@Partition[Prime[Range[2,110]],3,1] (* Harvey P. Dale, Sep 21 2013 *)
-
PARI
a(n) = prime(n)-(prime(n+1)+prime(n-1))/2; vector(100,n,a(n+2)) \\ Joerg Arndt, Jan 20 2015
-
Python
from sympy import sieve as p def A102552(n): return p[n]-(p[n+1]+p[n-1])//2 # Karl-Heinz Hofmann, May 22 2024
Formula
Extensions
More terms from Emeric Deutsch, Mar 02 2005