cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122535 Smallest prime of a triple of successive primes, where the middle one is the arithmetic mean of the other two.

Original entry on oeis.org

3, 47, 151, 167, 199, 251, 257, 367, 557, 587, 601, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1361, 1499, 1741, 1747, 1901, 2281, 2411, 2671, 2897, 2957, 3301, 3307, 3631, 3727, 4007, 4397, 4451, 4591, 4651, 4679, 4987, 5101, 5107, 5297, 5381, 5387
Offset: 1

Views

Author

Miklos Kristof, Sep 18 2006

Keywords

Comments

Subsets are A047948, A052188, A052189, A052190, A052195, A052197, A052198, etc. - R. J. Mathar, Apr 11 2008
Could be generated by searching for cases A001223(i) = A001223(i+1), writing down A000040(i). - R. J. Mathar, Dec 20 2008
a(n) = A006562(n) - A117217(n). - Zak Seidov, Feb 12 2013
These are primes for which the subsequent prime gaps are equal, so (p(k+2)-p(k+1))/(p(k+1)-p(k)) = 1. It is conjectured that prime gaps ratios equal to one are less frequent than those equal to 1/2, 2, 3/2, 2/3, 1/3 and 3. - Andres Cicuttin, Nov 07 2016

Examples

			The prime 7 is not in the list, because in the triple (7, 11, 13) of successive primes, 11 is not equal (7 + 13)/2 = 10.
The second term, 47, is the first prime in the triple (47, 53, 59) of primes, where 53 is the mean of 47 and 59.
		

Crossrefs

Programs

  • Haskell
    a122535 = a000040 . a064113  -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    Clear[d2, d1, k]; d2[n_] = Prime[n + 2] - 2*Prime[n + 1] + Prime[n]; d1[n_] = Prime[n + 1] - Prime[n]; k[n_] = -d2[n]/(1 + d1[n])^(3/2); Flatten[Table[If[k[n] == 0, Prime[n], {}], {n, 1, 1000}]] (* Roger L. Bagula, Nov 13 2008 *)
    Transpose[Select[Partition[Prime[Range[750]], 3, 1], #[[2]] == (#[[1]] + #[[3]])/2 &]][[1]]  (* Harvey P. Dale, Jan 09 2011 *)
  • PARI
    A122535()={n=3;ctr=0;while(ctr<50, avgg=( prime(n-2)+prime(n) )/2;
    if( prime(n-1) ==avgg, ctr+=1;print( ctr,"  ",prime(n-2) )  );n+=1); } \\ Bill McEachen, Jan 19 2015

Formula

{A000040(i): A000040(i+1)= (A000040(i)+A000040(i+2))/2 }. - R. J. Mathar, Dec 20 2008
a(n) = A000040(A064113(n)). - Reinhard Zumkeller, Jan 20 2012

Extensions

More terms from Roger L. Bagula, Nov 13 2008
Definition rephrased by R. J. Mathar, Dec 20 2008

A102553 Numbers k such that for all prime-factors p: p = (k AND p), bitwise.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 63, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 111, 113, 119, 123, 125, 127, 131, 135, 137, 139, 143, 149, 151, 157, 163, 167, 173, 175, 179, 181, 187, 191, 193, 197, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 14 2005

Keywords

Comments

Numbers k such that A102550(k) = A001221(k).
Apart from first term, subsequence of A102552;
A000040 is a subsequence.
Numbers k such that the bitwise OR of k with all prime divisors of k is equal to k. - Chai Wah Wu, Dec 18 2022

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], # == BitAnd[n, #]&];
    Select[Range[200], okQ] (* Jean-François Alcover, Nov 16 2021 *)
  • Python
    from itertools import count, islice
    from operator import ior
    from functools import reduce
    from sympy import primefactors
    def A102553_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n == 1 or n|reduce(ior,primefactors(n))==n,count(max(startvalue,1)))
    A102553_list = list(islice(A102553_gen(),20)) # Chai Wah Wu, Dec 18 2022
Showing 1-2 of 2 results.