A167119
Primes congruent to 2, 3, 5, 7 or 11 (mod 13).
Original entry on oeis.org
2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757
Offset: 1
11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
Cf.
A003627,
A045326,
A003631,
A045309,
A045314,
A042987,
A078403,
A042993,
A167134,
A167135: primes p such that p mod k is prime, for k = 3..12 resp.
-
[ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // Klaus Brockhaus, Oct 28 2009
-
f[n_]:=PrimeQ[Mod[n,13]]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,6,6!}];lst
Select[Prime[Range[4000]],MemberQ[{2, 3, 5, 7, 11},Mod[#,13]]&] (* Vincenzo Librandi, Aug 05 2012 *)
-
{forprime(p=2, 740, if(isprime(p%13), print1(p, ",")))} \\ Klaus Brockhaus, Oct 28 2009
A140371
Primes of the form 26k + 7.
Original entry on oeis.org
7, 59, 137, 163, 241, 293, 397, 449, 631, 683, 709, 761, 787, 839, 1021, 1151, 1229, 1307, 1489, 1567, 1619, 1697, 1723, 1801, 1879, 1931, 2087, 2113, 2243, 2269, 2347, 2399, 2477, 2503, 2633, 2659, 2711, 2789, 2971, 3023, 3049, 3257, 3361, 3413, 3491, 3517
Offset: 1
A140373
Primes of the form 26*n+11.
Original entry on oeis.org
11, 37, 89, 167, 193, 271, 349, 401, 479, 557, 661, 739, 947, 1051, 1103, 1129, 1181, 1259, 1493, 1571, 1597, 1753, 1831, 1987, 2039, 2143, 2221, 2273, 2351, 2377, 2663, 2689, 2741, 2767, 2819, 2897, 3001, 3079, 3209, 3313, 3391, 3469, 3547, 3677, 3833
Offset: 1
A140375
Primes of the form 26n+23.
Original entry on oeis.org
23, 101, 127, 179, 257, 283, 439, 491, 569, 647, 673, 751, 829, 881, 907, 1063, 1193, 1297, 1427, 1453, 1531, 1583, 1609, 1973, 1999, 2129, 2207, 2311, 2389, 2441, 2467, 2753, 2857, 2909, 3169, 3221, 3299, 3533, 3559, 3637, 3767, 3793, 3923, 4001, 4027
Offset: 1
A154610
Numbers n such that 13n + 5 is prime.
Original entry on oeis.org
0, 2, 6, 8, 18, 24, 32, 38, 44, 56, 62, 66, 72, 74, 78, 84, 86, 92, 98, 108, 114, 128, 132, 134, 144, 162, 164, 174, 176, 182, 186, 198, 204, 206, 224, 228, 246, 248, 254, 258, 266, 272, 276, 282, 284, 296, 302, 318, 324, 326, 336, 342, 368, 378, 386, 392, 396
Offset: 1
-
[n: n in [0..410] | IsPrime(13*n+5)]; // Vincenzo Librandi, Sep 24 2012
-
lst={};Do[p=13*n+5;If[PrimeQ[p],AppendTo[lst,n]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 01 2009 *)
Select[Range[0, 100], PrimeQ[13#+5]&] (* Vincenzo Librandi, Sep 24 2012 *)
-
is(n)=isprime(13*n+5) \\ Charles R Greathouse IV, Sep 24 2012
A140372
Primes of the form 26k + 9.
Original entry on oeis.org
61, 113, 139, 191, 269, 347, 373, 503, 607, 659, 919, 971, 997, 1049, 1153, 1231, 1283, 1361, 1439, 1543, 1621, 1699, 1777, 1907, 1933, 2011, 2063, 2089, 2141, 2297, 2531, 2557, 2609, 2687, 2713, 2791, 2843, 2999, 3181, 3259, 3389, 3467, 3571, 3623, 3701
Offset: 1
A140374
Primes of the form 26k + 15.
Original entry on oeis.org
41, 67, 197, 223, 353, 379, 431, 457, 509, 587, 613, 691, 743, 769, 821, 977, 1237, 1289, 1367, 1471, 1523, 1549, 1601, 1627, 1783, 1861, 1913, 2017, 2069, 2251, 2381, 2459, 2693, 2719, 2797, 2927, 2953, 3083, 3109, 3187, 3343, 3499, 3733, 3863, 3889
Offset: 1
A140376
Nonprimes of the form 26n+1.
Original entry on oeis.org
1, 27, 105, 183, 209, 235, 261, 287, 339, 365, 391, 417, 469, 495, 573, 625, 651, 703, 729, 755, 781, 807, 833, 885, 963, 989, 1015, 1041, 1067, 1119, 1145, 1197, 1275, 1353, 1379, 1405, 1431, 1457, 1509, 1535, 1561, 1587, 1639, 1665, 1691, 1717, 1743
Offset: 1
A155935
Numbers n such that 13*n + 5 is not prime.
Original entry on oeis.org
1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81
Offset: 1
Distribution of the even terms in the following triangular array::
*;
*,*;
*,*,*;
*,*,*,*;
*,*,*,*,*;
*,*,*,*,*,*;
*,*,*,10,*,*,*;
*,*,*,*,14,*,*,*;
4,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*,*,*;
*,*,12,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*,*,40,*,*; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h - 4)/13 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
-
[n: n in [0..90] | not IsPrime(13*n + 5)];
-
Select[Range[0, 100], !PrimeQ[13 # + 5] &] (* Vincenzo Librandi, Oct 15 2012 *)
A274202
Primes congruent to 31 mod 65.
Original entry on oeis.org
31, 421, 811, 941, 1201, 1721, 2111, 2371, 3541, 3671, 3931, 4451, 5101, 5231, 5881, 6011, 6271, 6661, 6791, 8221, 8741, 9001, 9391, 9521, 9781, 10301, 10691, 11471, 11731, 12251, 12511, 12641, 13291, 13421, 13681, 14071, 14461, 14591, 14851, 15241, 15761
Offset: 1
Cf. similar sequences of the type primes congruent to k mod 2*k+3:
A045392 (k=2),
A102732 (k=5),
A138629 (k=7),
A141873 (k=8),
A141914 (k=10),
A141935 (k=11),
A141989 (k=13),
A142018 (k=14),
A142086 (k=16),
A142126 (k=17),
A142216 (k=19),
A142269 (k=20),
A142373 (k=22),
A142433 (k=23),
A142555 (k=25),
A142619 (k=26),
A142755 (k=28),
A142827 (k=29), this sequence (k=31),
A154621 (k=32),
A154624 (k=34),
A154628 (k=35).
-
[p: p in PrimesUpTo(20000) | p mod 65 eq 31];
-
Select[Prime[Range[2000]], MemberQ[{31}, Mod[#, 65]] &]
Select[Range[31,16000,65],PrimeQ] (* Harvey P. Dale, May 06 2018 *)
Showing 1-10 of 11 results.
Comments